mmpretrain/tools/torchserve/test_torchserver.py

44 lines
1.4 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from argparse import ArgumentParser
import numpy as np
import requests
from mmpretrain.apis import get_model, inference_model
def parse_args():
parser = ArgumentParser()
parser.add_argument('img', help='Image file')
parser.add_argument('config', help='Config file')
parser.add_argument('checkpoint', help='Checkpoint file')
parser.add_argument('model_name', help='The model name in the server')
parser.add_argument(
'--inference-addr',
default='127.0.0.1:8080',
help='Address and port of the inference server')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
args = parser.parse_args()
return args
def main(args):
# Inference single image by native apis.
model = get_model(args.config, args.checkpoint, device=args.device)
model_result = inference_model(model, args.img)
# Inference single image by torchserve engine.
url = 'http://' + args.inference_addr + '/predictions/' + args.model_name
with open(args.img, 'rb') as image:
response = requests.post(url, image)
server_result = response.json()
assert np.allclose(model_result['pred_score'], server_result['pred_score'])
print('Test complete, the results of PyTorch and TorchServe are the same.')
if __name__ == '__main__':
args = parse_args()
main(args)