99 lines
2.9 KiB
Python
99 lines
2.9 KiB
Python
import os.path as osp
|
|
|
|
# run with 8 GPUs
|
|
|
|
# model settings
|
|
model = dict(
|
|
type='ImageClassifier',
|
|
backbone=dict(
|
|
type='ResNet',
|
|
depth=50,
|
|
num_stages=4,
|
|
out_indices=(3, ),
|
|
style='pytorch'),
|
|
neck=dict(type='GlobalAveragePooling'),
|
|
head=dict(
|
|
type='LinearHead',
|
|
num_classes=1000,
|
|
in_channels=2048,
|
|
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
|
|
))
|
|
# dataset settings
|
|
dataset_type = 'ImageNet'
|
|
img_norm_cfg = dict(
|
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
memcached_root = '/mnt/lustre/share/memcached_client/'
|
|
train_pipeline = [
|
|
dict(
|
|
type='LoadImageFromFile',
|
|
file_client_args=dict(
|
|
backend='memcached',
|
|
server_list_cfg=osp.join(memcached_root, 'server_list.conf'),
|
|
client_cfg=osp.join(memcached_root, 'client.conf'))),
|
|
dict(type='ToPIL'),
|
|
dict(type='RandomResizedCrop', size=224),
|
|
dict(type='RandomHorizontalFlip', p=0.5),
|
|
dict(type='ToNumpy'),
|
|
dict(type='Normalize', **img_norm_cfg),
|
|
dict(type='ImageToTensor', keys=['img']),
|
|
dict(type='ToTensor', keys=['gt_labels']),
|
|
dict(type='Collect', keys=['img', 'gt_labels'])
|
|
]
|
|
test_pipeline = [
|
|
dict(
|
|
type='LoadImageFromFile',
|
|
file_client_args=dict(
|
|
backend='memcached',
|
|
server_list_cfg=osp.join(memcached_root, 'server_list.conf'),
|
|
client_cfg=osp.join(memcached_root, 'client.conf'))),
|
|
dict(type='ToPIL'),
|
|
dict(type='Resize', size=256),
|
|
dict(type='CenterCrop', size=224),
|
|
dict(type='ToNumpy'),
|
|
dict(type='Normalize', **img_norm_cfg),
|
|
dict(type='ImageToTensor', keys=['img']),
|
|
dict(type='ToTensor', keys=['gt_labels']),
|
|
dict(type='Collect', keys=['img', 'gt_labels'])
|
|
]
|
|
data = dict(
|
|
samples_per_gpu=64,
|
|
workers_per_gpu=2,
|
|
train=dict(
|
|
type=dataset_type,
|
|
data_prefix='data/imagenet/train',
|
|
pipeline=train_pipeline),
|
|
val=dict(
|
|
type=dataset_type,
|
|
data_prefix='data/imagenet/val',
|
|
ann_file='data/imagenet/meta/val.txt',
|
|
pipeline=test_pipeline),
|
|
test=dict(
|
|
# replace `data/val` with `data/test` for standard test
|
|
type=dataset_type,
|
|
data_prefix='data/imagenet/val',
|
|
ann_file='data/imagenet/meta/val.txt',
|
|
pipeline=test_pipeline))
|
|
# optimizer
|
|
optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001)
|
|
optimizer_config = dict(grad_clip=None)
|
|
# learning policy
|
|
lr_config = dict(policy='step', step=[30, 60, 90])
|
|
# checkpoint saving
|
|
checkpoint_config = dict(interval=1)
|
|
# yapf:disable
|
|
log_config = dict(
|
|
interval=100,
|
|
hooks=[
|
|
dict(type='TextLoggerHook'),
|
|
# dict(type='TensorboardLoggerHook')
|
|
])
|
|
# yapf:enable
|
|
# runtime settings
|
|
total_epochs = 100
|
|
dist_params = dict(backend='nccl')
|
|
log_level = 'INFO'
|
|
work_dir = './work_dirs/imagenet_resnet50_batch256'
|
|
load_from = None
|
|
resume_from = None
|
|
workflow = [('train', 1)]
|