mmpretrain/configs/imagenet/resnet50_batch512.py

99 lines
2.9 KiB
Python

import os.path as osp
# run with 8 GPUs
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(3, ),
style='pytorch'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearHead',
num_classes=1000,
in_channels=2048,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# dataset settings
dataset_type = 'ImageNet'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
memcached_root = '/mnt/lustre/share/memcached_client/'
train_pipeline = [
dict(
type='LoadImageFromFile',
file_client_args=dict(
backend='memcached',
server_list_cfg=osp.join(memcached_root, 'server_list.conf'),
client_cfg=osp.join(memcached_root, 'client.conf'))),
dict(type='ToPIL'),
dict(type='RandomResizedCrop', size=224),
dict(type='RandomHorizontalFlip', p=0.5),
dict(type='ToNumpy'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_labels']),
dict(type='Collect', keys=['img', 'gt_labels'])
]
test_pipeline = [
dict(
type='LoadImageFromFile',
file_client_args=dict(
backend='memcached',
server_list_cfg=osp.join(memcached_root, 'server_list.conf'),
client_cfg=osp.join(memcached_root, 'client.conf'))),
dict(type='ToPIL'),
dict(type='Resize', size=256),
dict(type='CenterCrop', size=224),
dict(type='ToNumpy'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_labels']),
dict(type='Collect', keys=['img', 'gt_labels'])
]
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
train=dict(
type=dataset_type,
data_prefix='data/imagenet/train',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline),
test=dict(
# replace `data/val` with `data/test` for standard test
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline))
# optimizer
optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(policy='step', step=[30, 60, 90])
# checkpoint saving
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
interval=100,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs = 100
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/imagenet_resnet50_batch256'
load_from = None
resume_from = None
workflow = [('train', 1)]