mmpretrain/tests/test_datasets/test_datasets.py

877 lines
32 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os
import os.path as osp
import pickle
import sys
import tempfile
from unittest import TestCase
from unittest.mock import MagicMock, call, patch
import numpy as np
from mmengine.logging import MMLogger
from mmengine.registry import TRANSFORMS
from mmcls.registry import DATASETS
from mmcls.utils import register_all_modules
register_all_modules()
ASSETS_ROOT = osp.abspath(osp.join(osp.dirname(__file__), '../data/dataset'))
class TestBaseDataset(TestCase):
DATASET_TYPE = 'BaseDataset'
DEFAULT_ARGS = dict(data_root=ASSETS_ROOT, ann_file='ann.json')
def test_initialize(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
# Test loading metainfo from ann_file
cfg = {**self.DEFAULT_ARGS, 'metainfo': None, 'classes': None}
dataset = dataset_class(**cfg)
self.assertEqual(
dataset.CLASSES,
dataset_class.METAINFO.get('classes', ('first', 'second')))
self.assertFalse(dataset.test_mode)
# Test overriding metainfo by `metainfo` argument
cfg = {**self.DEFAULT_ARGS, 'metainfo': {'classes': ('bus', 'car')}}
dataset = dataset_class(**cfg)
self.assertEqual(dataset.CLASSES, ('bus', 'car'))
# Test overriding metainfo by `classes` argument
cfg = {**self.DEFAULT_ARGS, 'classes': ['bus', 'car']}
dataset = dataset_class(**cfg)
self.assertEqual(dataset.CLASSES, ('bus', 'car'))
classes_file = osp.join(ASSETS_ROOT, 'classes.txt')
cfg = {**self.DEFAULT_ARGS, 'classes': classes_file}
dataset = dataset_class(**cfg)
self.assertEqual(dataset.CLASSES, ('bus', 'car'))
self.assertEqual(dataset.class_to_idx, {'bus': 0, 'car': 1})
# Test invalid classes
cfg = {**self.DEFAULT_ARGS, 'classes': dict(classes=1)}
with self.assertRaisesRegex(ValueError, "type <class 'dict'>"):
dataset_class(**cfg)
def test_get_cat_ids(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
dataset = dataset_class(**self.DEFAULT_ARGS)
cat_ids = dataset.get_cat_ids(0)
self.assertIsInstance(cat_ids, list)
self.assertEqual(len(cat_ids), 1)
self.assertIsInstance(cat_ids[0], int)
def test_repr(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
cfg = {**self.DEFAULT_ARGS, 'lazy_init': True}
dataset = dataset_class(**cfg)
head = 'Dataset ' + dataset.__class__.__name__
self.assertIn(head, repr(dataset))
if dataset.CLASSES is not None:
num_classes = len(dataset.CLASSES)
self.assertIn(f'Number of categories: \t{num_classes}',
repr(dataset))
else:
self.assertIn('The `CLASSES` meta info is not set.', repr(dataset))
self.assertIn("Haven't been initialized", repr(dataset))
dataset.full_init()
self.assertIn(f'Number of samples: \t{len(dataset)}', repr(dataset))
TRANSFORMS.register_module(name='test_mock', module=MagicMock)
cfg = {**self.DEFAULT_ARGS, 'pipeline': [dict(type='test_mock')]}
dataset = dataset_class(**cfg)
self.assertIn('With transforms', repr(dataset))
del TRANSFORMS.module_dict['test_mock']
def test_extra_repr(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
cfg = {**self.DEFAULT_ARGS, 'lazy_init': True}
dataset = dataset_class(**cfg)
self.assertIn(f'Annotation file: \t{dataset.ann_file}', repr(dataset))
self.assertIn(f'Prefix of images: \t{dataset.img_prefix}',
repr(dataset))
class TestCustomDataset(TestBaseDataset):
DATASET_TYPE = 'CustomDataset'
DEFAULT_ARGS = dict(data_root=ASSETS_ROOT, ann_file='ann.txt')
def test_initialize(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
# Test overriding metainfo by `metainfo` argument
cfg = {**self.DEFAULT_ARGS, 'metainfo': {'classes': ('bus', 'car')}}
dataset = dataset_class(**cfg)
self.assertEqual(dataset.CLASSES, ('bus', 'car'))
# Test overriding metainfo by `classes` argument
cfg = {**self.DEFAULT_ARGS, 'classes': ['bus', 'car']}
dataset = dataset_class(**cfg)
self.assertEqual(dataset.CLASSES, ('bus', 'car'))
classes_file = osp.join(ASSETS_ROOT, 'classes.txt')
cfg = {**self.DEFAULT_ARGS, 'classes': classes_file}
dataset = dataset_class(**cfg)
self.assertEqual(dataset.CLASSES, ('bus', 'car'))
self.assertEqual(dataset.class_to_idx, {'bus': 0, 'car': 1})
# Test invalid classes
cfg = {**self.DEFAULT_ARGS, 'classes': dict(classes=1)}
with self.assertRaisesRegex(ValueError, "type <class 'dict'>"):
dataset_class(**cfg)
def test_load_data_list(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
# test load without ann_file
cfg = {
**self.DEFAULT_ARGS,
'data_prefix': ASSETS_ROOT,
'ann_file': '',
}
dataset = dataset_class(**cfg)
self.assertEqual(len(dataset), 3)
self.assertEqual(dataset.CLASSES, ('a', 'b')) # auto infer classes
self.assertGreaterEqual(
dataset.get_data_info(0).items(), {
'img_path': osp.join(ASSETS_ROOT, 'a', '1.JPG'),
'gt_label': 0
}.items())
self.assertGreaterEqual(
dataset.get_data_info(2).items(), {
'img_path': osp.join(ASSETS_ROOT, 'b', 'subb', '3.jpg'),
'gt_label': 1
}.items())
# test ann_file assertion
cfg = {
**self.DEFAULT_ARGS,
'data_prefix': ASSETS_ROOT,
'ann_file': ['ann_file.txt'],
}
with self.assertRaisesRegex(TypeError, 'expected str'):
dataset_class(**cfg)
# test load with ann_file
cfg = {
**self.DEFAULT_ARGS,
'data_root': ASSETS_ROOT,
'ann_file': 'ann.txt',
}
dataset = dataset_class(**cfg)
self.assertEqual(len(dataset), 3)
# custom dataset won't infer CLASSES from ann_file
self.assertIsNone(dataset.CLASSES, None)
self.assertGreaterEqual(
dataset.get_data_info(0).items(), {
'img_path': osp.join(ASSETS_ROOT, 'a/1.JPG'),
'gt_label': 0,
}.items())
self.assertGreaterEqual(
dataset.get_data_info(2).items(), {
'img_path': osp.join(ASSETS_ROOT, 'b/subb/3.jpg'),
'gt_label': 1
}.items())
np.testing.assert_equal(dataset.get_gt_labels(), np.array([0, 1, 1]))
# test load with absolute ann_file
cfg = {
**self.DEFAULT_ARGS,
'data_root': '',
'data_prefix': '',
'ann_file': osp.join(ASSETS_ROOT, 'ann.txt'),
}
dataset = dataset_class(**cfg)
self.assertEqual(len(dataset), 3)
# custom dataset won't infer CLASSES from ann_file
self.assertIsNone(dataset.CLASSES, None)
self.assertGreaterEqual(
dataset.get_data_info(0).items(), {
'img_path': 'a/1.JPG',
'gt_label': 0,
}.items())
self.assertGreaterEqual(
dataset.get_data_info(2).items(), {
'img_path': 'b/subb/3.jpg',
'gt_label': 1
}.items())
# test extensions filter
cfg = {
**self.DEFAULT_ARGS, 'data_prefix': dict(img_path=ASSETS_ROOT),
'ann_file': '',
'extensions': ('.txt', )
}
with self.assertRaisesRegex(RuntimeError,
'Supported extensions are: .txt'):
dataset_class(**cfg)
cfg = {
**self.DEFAULT_ARGS, 'data_prefix': ASSETS_ROOT,
'ann_file': '',
'extensions': ('.jpeg', )
}
logger = MMLogger.get_current_instance()
with self.assertLogs(logger, 'WARN') as log:
dataset = dataset_class(**cfg)
self.assertIn('Supported extensions are: .jpeg', log.output[0])
self.assertEqual(len(dataset), 1)
self.assertGreaterEqual(
dataset.get_data_info(0).items(), {
'img_path': osp.join(ASSETS_ROOT, 'b', '2.jpeg'),
'gt_label': 1
}.items())
# test classes check
cfg = {
**self.DEFAULT_ARGS,
'data_prefix': ASSETS_ROOT,
'classes': ('apple', 'banana'),
'ann_file': '',
}
dataset = dataset_class(**cfg)
self.assertEqual(dataset.CLASSES, ('apple', 'banana'))
cfg['classes'] = ['apple', 'banana', 'dog']
with self.assertRaisesRegex(AssertionError,
r"\(2\) doesn't match .* classes \(3\)"):
dataset_class(**cfg)
class TestImageNet(TestCustomDataset):
DATASET_TYPE = 'ImageNet'
DEFAULT_ARGS = dict(data_root=ASSETS_ROOT, ann_file='ann.txt')
def test_load_data_list(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
# test classes number
cfg = {
**self.DEFAULT_ARGS,
'data_prefix': ASSETS_ROOT,
'ann_file': '',
}
with self.assertRaisesRegex(
AssertionError, r"\(2\) doesn't match .* classes \(1000\)"):
dataset_class(**cfg)
# test override classes
cfg = {
**self.DEFAULT_ARGS,
'data_prefix': ASSETS_ROOT,
'classes': ['cat', 'dog'],
'ann_file': '',
}
dataset = dataset_class(**cfg)
self.assertEqual(len(dataset), 3)
self.assertEqual(dataset.CLASSES, ('cat', 'dog'))
class TestImageNet21k(TestCustomDataset):
DATASET_TYPE = 'ImageNet21k'
DEFAULT_ARGS = dict(
data_root=ASSETS_ROOT, classes=['cat', 'dog'], ann_file='ann.txt')
def test_load_data_list(self):
super().test_initialize()
dataset_class = DATASETS.get(self.DATASET_TYPE)
# The multi_label option is not implemented not.
cfg = {**self.DEFAULT_ARGS, 'multi_label': True}
with self.assertRaisesRegex(NotImplementedError, 'not supported'):
dataset_class(**cfg)
# Warn about ann_file
cfg = {**self.DEFAULT_ARGS, 'ann_file': ''}
logger = MMLogger.get_current_instance()
with self.assertLogs(logger, 'WARN') as log:
dataset_class(**cfg)
self.assertIn('specify the `ann_file`', log.output[0])
# Warn about classes
cfg = {**self.DEFAULT_ARGS, 'classes': None}
with self.assertLogs(logger, 'WARN') as log:
dataset_class(**cfg)
self.assertIn('specify the `classes`', log.output[0])
class TestCIFAR10(TestBaseDataset):
DATASET_TYPE = 'CIFAR10'
@classmethod
def setUpClass(cls) -> None:
super().setUpClass()
tmpdir = tempfile.TemporaryDirectory()
cls.tmpdir = tmpdir
data_prefix = tmpdir.name
cls.DEFAULT_ARGS = dict(
data_prefix=data_prefix, pipeline=[], test_mode=False)
dataset_class = DATASETS.get(cls.DATASET_TYPE)
base_folder = osp.join(data_prefix, dataset_class.base_folder)
os.mkdir(base_folder)
cls.fake_imgs = np.random.randint(
0, 255, size=(6, 3 * 32 * 32), dtype=np.uint8)
cls.fake_labels = np.random.randint(0, 10, size=(6, ))
cls.fake_classes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
batch1 = dict(
data=cls.fake_imgs[:2], labels=cls.fake_labels[:2].tolist())
with open(osp.join(base_folder, 'data_batch_1'), 'wb') as f:
f.write(pickle.dumps(batch1))
batch2 = dict(
data=cls.fake_imgs[2:4], labels=cls.fake_labels[2:4].tolist())
with open(osp.join(base_folder, 'data_batch_2'), 'wb') as f:
f.write(pickle.dumps(batch2))
test_batch = dict(
data=cls.fake_imgs[4:], fine_labels=cls.fake_labels[4:].tolist())
with open(osp.join(base_folder, 'test_batch'), 'wb') as f:
f.write(pickle.dumps(test_batch))
meta = {dataset_class.meta['key']: cls.fake_classes}
meta_filename = dataset_class.meta['filename']
with open(osp.join(base_folder, meta_filename), 'wb') as f:
f.write(pickle.dumps(meta))
dataset_class.train_list = [['data_batch_1', None],
['data_batch_2', None]]
dataset_class.test_list = [['test_batch', None]]
dataset_class.meta['md5'] = None
def test_initialize(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
# Test overriding metainfo by `metainfo` argument
cfg = {**self.DEFAULT_ARGS, 'metainfo': {'classes': ('bus', 'car')}}
dataset = dataset_class(**cfg)
self.assertEqual(dataset.CLASSES, ('bus', 'car'))
# Test overriding metainfo by `classes` argument
cfg = {**self.DEFAULT_ARGS, 'classes': ['bus', 'car']}
dataset = dataset_class(**cfg)
self.assertEqual(dataset.CLASSES, ('bus', 'car'))
classes_file = osp.join(ASSETS_ROOT, 'classes.txt')
cfg = {**self.DEFAULT_ARGS, 'classes': classes_file}
dataset = dataset_class(**cfg)
self.assertEqual(dataset.CLASSES, ('bus', 'car'))
self.assertEqual(dataset.class_to_idx, {'bus': 0, 'car': 1})
# Test invalid classes
cfg = {**self.DEFAULT_ARGS, 'classes': dict(classes=1)}
with self.assertRaisesRegex(ValueError, "type <class 'dict'>"):
dataset_class(**cfg)
def test_load_data_list(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
# Test default behavior
dataset = dataset_class(**self.DEFAULT_ARGS)
self.assertEqual(len(dataset), 4)
self.assertEqual(dataset.CLASSES, dataset_class.METAINFO['classes'])
data_info = dataset[0]
fake_img = self.fake_imgs[0].reshape(3, 32, 32).transpose(1, 2, 0)
np.testing.assert_equal(data_info['img'], fake_img)
np.testing.assert_equal(data_info['gt_label'], self.fake_labels[0])
# Test with test_mode=True
cfg = {**self.DEFAULT_ARGS, 'test_mode': True}
dataset = dataset_class(**cfg)
self.assertEqual(len(dataset), 2)
data_info = dataset[0]
fake_img = self.fake_imgs[4].reshape(3, 32, 32).transpose(1, 2, 0)
np.testing.assert_equal(data_info['img'], fake_img)
np.testing.assert_equal(data_info['gt_label'], self.fake_labels[4])
# Test load meta
cfg = {**self.DEFAULT_ARGS, 'lazy_init': True}
dataset = dataset_class(**cfg)
dataset._metainfo = {}
dataset.full_init()
self.assertEqual(dataset.CLASSES, self.fake_classes)
cfg = {**self.DEFAULT_ARGS, 'lazy_init': True}
dataset = dataset_class(**cfg)
dataset._metainfo = {}
dataset.meta['filename'] = 'invalid'
with self.assertRaisesRegex(RuntimeError, 'not found or corrupted'):
dataset.full_init()
# Test automatically download
with patch(
'mmcls.datasets.cifar.download_and_extract_archive') as mock:
cfg = {**self.DEFAULT_ARGS, 'lazy_init': True, 'test_mode': True}
dataset = dataset_class(**cfg)
dataset.test_list = [['invalid_batch', None]]
with self.assertRaisesRegex(AssertionError, 'Download failed'):
dataset.full_init()
mock.assert_called_once_with(
dataset.url,
dataset.data_prefix['root'],
filename=dataset.filename,
md5=dataset.tgz_md5)
with self.assertRaisesRegex(RuntimeError, '`download=True`'):
cfg = {
**self.DEFAULT_ARGS, 'lazy_init': True,
'test_mode': True,
'download': False
}
dataset = dataset_class(**cfg)
dataset.test_list = [['test_batch', 'invalid_md5']]
dataset.full_init()
# Test different backend
cfg = {
**self.DEFAULT_ARGS, 'lazy_init': True,
'data_prefix': 'http://openmmlab/cifar'
}
dataset = dataset_class(**cfg)
dataset._check_integrity = MagicMock(return_value=False)
with self.assertRaisesRegex(RuntimeError, 'http://openmmlab/cifar'):
dataset.full_init()
def test_extra_repr(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
cfg = {**self.DEFAULT_ARGS, 'lazy_init': True}
dataset = dataset_class(**cfg)
self.assertIn(f'Prefix of data: \t{dataset.data_prefix["root"]}',
repr(dataset))
@classmethod
def tearDownClass(cls):
cls.tmpdir.cleanup()
class TestCIFAR100(TestCIFAR10):
DATASET_TYPE = 'CIFAR100'
class TestMultiLabelDataset(TestBaseDataset):
DATASET_TYPE = 'MultiLabelDataset'
DEFAULT_ARGS = dict(data_root=ASSETS_ROOT, ann_file='multi_label_ann.json')
def test_get_cat_ids(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
cfg = {**self.DEFAULT_ARGS}
dataset = dataset_class(**cfg)
cat_ids = dataset.get_cat_ids(0)
self.assertTrue(cat_ids, [0])
cat_ids = dataset.get_cat_ids(1)
self.assertTrue(cat_ids, [1])
cat_ids = dataset.get_cat_ids(1)
self.assertTrue(cat_ids, [0, 1])
class TestVOC(TestBaseDataset):
DATASET_TYPE = 'VOC'
@classmethod
def setUpClass(cls) -> None:
super().setUpClass()
tmpdir = tempfile.TemporaryDirectory()
cls.tmpdir = tmpdir
data_root = tmpdir.name
cls.DEFAULT_ARGS = dict(
data_root=data_root,
image_set_path='ImageSets/train.txt',
data_prefix=dict(img_path='JPEGImages', ann_path='Annotations'),
pipeline=[],
test_mode=False)
cls.image_folder = osp.join(data_root, 'JPEGImages')
cls.ann_folder = osp.join(data_root, 'Annotations')
cls.image_set_folder = osp.join(data_root, 'ImageSets')
os.mkdir(cls.image_set_folder)
os.mkdir(cls.image_folder)
os.mkdir(cls.ann_folder)
cls.fake_img_paths = [f'{i}' for i in range(6)]
cls.fake_labels = [[
np.random.randint(10) for _ in range(np.random.randint(1, 4))
] for _ in range(6)]
cls.fake_classes = [f'C_{i}' for i in range(10)]
train_list = [i for i in range(0, 4)]
test_list = [i for i in range(4, 6)]
with open(osp.join(cls.image_set_folder, 'train.txt'), 'w') as f:
for train_item in train_list:
f.write(str(train_item) + '\n')
with open(osp.join(cls.image_set_folder, 'test.txt'), 'w') as f:
for test_item in test_list:
f.write(str(test_item) + '\n')
with open(osp.join(cls.image_set_folder, 'full_path_test.txt'),
'w') as f:
for test_item in test_list:
f.write(osp.join(cls.image_folder, str(test_item)) + '\n')
for train_item in train_list:
with open(osp.join(cls.ann_folder, f'{train_item}.xml'), 'w') as f:
temple = '<object><name>C_{}</name>{}</object>'
ann_data = ''.join([
temple.format(label, '<difficult>0</difficult>')
for label in cls.fake_labels[train_item]
])
# add difficult label
ann_data += ''.join([
temple.format(label, '<difficult>1</difficult>')
for label in cls.fake_labels[train_item]
])
xml_ann_data = f'<annotation>{ann_data}</annotation>'
f.write(xml_ann_data + '\n')
for test_item in test_list:
with open(osp.join(cls.ann_folder, f'{test_item}.xml'), 'w') as f:
temple = '<object><name>C_{}</name>{}</object>'
ann_data = ''.join([
temple.format(label, '<difficult>0</difficult>')
for label in cls.fake_labels[test_item]
])
xml_ann_data = f'<annotation>{ann_data}</annotation>'
f.write(xml_ann_data + '\n')
def test_initialize(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
# Test overriding metainfo by `classes` argument
cfg = {**self.DEFAULT_ARGS, 'classes': ['bus', 'car']}
dataset = dataset_class(**cfg)
self.assertEqual(dataset.CLASSES, ('bus', 'car'))
# Test overriding CLASSES by classes file
classes_file = osp.join(ASSETS_ROOT, 'classes.txt')
cfg = {**self.DEFAULT_ARGS, 'classes': classes_file}
dataset = dataset_class(**cfg)
self.assertEqual(dataset.CLASSES, ('bus', 'car'))
self.assertEqual(dataset.class_to_idx, {'bus': 0, 'car': 1})
# Test invalid classes
cfg = {**self.DEFAULT_ARGS, 'classes': dict(classes=1)}
with self.assertRaisesRegex(ValueError, "type <class 'dict'>"):
dataset_class(**cfg)
def test_get_cat_ids(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
cfg = {'classes': self.fake_classes, **self.DEFAULT_ARGS}
dataset = dataset_class(**cfg)
cat_ids = dataset.get_cat_ids(0)
self.assertIsInstance(cat_ids, list)
self.assertIsInstance(cat_ids[0], int)
def test_load_data_list(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
# Test default behavior
dataset = dataset_class(**self.DEFAULT_ARGS)
self.assertEqual(len(dataset), 4)
self.assertEqual(len(dataset.CLASSES), 20)
cfg = {
'classes': self.fake_classes,
'lazy_init': True,
**self.DEFAULT_ARGS
}
dataset = dataset_class(**cfg)
self.assertIn("Haven't been initialized", repr(dataset))
dataset.full_init()
self.assertIn(f'Number of samples: \t{len(dataset)}', repr(dataset))
data_info = dataset[0]
fake_img_path = osp.join(self.image_folder, self.fake_img_paths[0])
self.assertEqual(data_info['img_path'], f'{fake_img_path}.jpg')
self.assertEqual(set(data_info['gt_label']), set(self.fake_labels[0]))
# Test with test_mode=True
cfg['image_set_path'] = 'ImageSets/test.txt'
cfg['test_mode'] = True
dataset = dataset_class(**cfg)
self.assertEqual(len(dataset), 2)
data_info = dataset[0]
fake_img_path = osp.join(self.image_folder, self.fake_img_paths[4])
self.assertEqual(data_info['img_path'], f'{fake_img_path}.jpg')
self.assertEqual(set(data_info['gt_label']), set(self.fake_labels[4]))
# Test with test_mode=True and ann_path = None
cfg['image_set_path'] = 'ImageSets/test.txt'
cfg['test_mode'] = True
cfg['data_prefix'] = 'JPEGImages'
dataset = dataset_class(**cfg)
self.assertEqual(len(dataset), 2)
data_info = dataset[0]
fake_img_path = osp.join(self.image_folder, self.fake_img_paths[4])
self.assertEqual(data_info['img_path'], f'{fake_img_path}.jpg')
self.assertEqual(data_info['gt_label'], None)
# Test different backend
cfg = {
**self.DEFAULT_ARGS, 'lazy_init': True,
'data_root': 's3://openmmlab/voc'
}
petrel_mock = MagicMock()
sys.modules['petrel_client'] = petrel_mock
dataset = dataset_class(**cfg)
petrel_mock.client.Client.assert_called()
def test_extra_repr(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
cfg = {**self.DEFAULT_ARGS}
dataset = dataset_class(**cfg)
self.assertIn(f'Path of image set: \t{dataset.image_set_path}',
repr(dataset))
self.assertIn(f'Prefix of dataset: \t{dataset.data_root}',
repr(dataset))
self.assertIn(f'Prefix of annotations: \t{dataset.ann_prefix}',
repr(dataset))
self.assertIn(f'Prefix of images: \t{dataset.img_prefix}',
repr(dataset))
@classmethod
def tearDownClass(cls):
cls.tmpdir.cleanup()
class TestMNIST(TestBaseDataset):
DATASET_TYPE = 'MNIST'
@classmethod
def setUpClass(cls) -> None:
super().setUpClass()
tmpdir = tempfile.TemporaryDirectory()
cls.tmpdir = tmpdir
data_prefix = tmpdir.name
cls.DEFAULT_ARGS = dict(
data_prefix=data_prefix, pipeline=[], test_mode=False)
dataset_class = DATASETS.get(cls.DATASET_TYPE)
def rm_suffix(s):
return s[:s.rfind('.')]
train_image_file = osp.join(data_prefix,
rm_suffix(dataset_class.train_list[0][0]))
train_label_file = osp.join(data_prefix,
rm_suffix(dataset_class.train_list[1][0]))
test_image_file = osp.join(data_prefix,
rm_suffix(dataset_class.test_list[0][0]))
test_label_file = osp.join(data_prefix,
rm_suffix(dataset_class.test_list[1][0]))
cls.fake_img = np.random.randint(0, 255, size=(28, 28), dtype=np.uint8)
cls.fake_label = np.random.randint(0, 10, size=(1, ), dtype=np.uint8)
for file in [train_image_file, test_image_file]:
magic = b'\x00\x00\x08\x03' # num_dims = 3, type = uint8
head = b'\x00\x00\x00\x01' + b'\x00\x00\x00\x1c' * 2 # (1, 28, 28)
data = magic + head + cls.fake_img.flatten().tobytes()
with open(file, 'wb') as f:
f.write(data)
for file in [train_label_file, test_label_file]:
magic = b'\x00\x00\x08\x01' # num_dims = 3, type = uint8
head = b'\x00\x00\x00\x01' # (1, )
data = magic + head + cls.fake_label.tobytes()
with open(file, 'wb') as f:
f.write(data)
def test_load_data_list(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
# Test default behavior
dataset = dataset_class(**self.DEFAULT_ARGS)
self.assertEqual(len(dataset), 1)
self.assertEqual(dataset.CLASSES, dataset_class.METAINFO['classes'])
data_info = dataset[0]
np.testing.assert_equal(data_info['img'], self.fake_img)
np.testing.assert_equal(data_info['gt_label'], self.fake_label)
# Test with test_mode=True
cfg = {**self.DEFAULT_ARGS, 'test_mode': True}
dataset = dataset_class(**cfg)
self.assertEqual(len(dataset), 1)
data_info = dataset[0]
np.testing.assert_equal(data_info['img'], self.fake_img)
np.testing.assert_equal(data_info['gt_label'], self.fake_label)
# Test automatically download
with patch(
'mmcls.datasets.mnist.download_and_extract_archive') as mock:
cfg = {**self.DEFAULT_ARGS, 'lazy_init': True, 'test_mode': True}
dataset = dataset_class(**cfg)
dataset.train_list = [['invalid_train_file', None]]
dataset.test_list = [['invalid_test_file', None]]
with self.assertRaisesRegex(AssertionError, 'Download failed'):
dataset.full_init()
calls = [
call(
osp.join(dataset.url_prefix, dataset.train_list[0][0]),
download_root=dataset.data_prefix['root'],
filename=dataset.train_list[0][0],
md5=None),
call(
osp.join(dataset.url_prefix, dataset.test_list[0][0]),
download_root=dataset.data_prefix['root'],
filename=dataset.test_list[0][0],
md5=None)
]
mock.assert_has_calls(calls)
with self.assertRaisesRegex(RuntimeError, '`download=True`'):
cfg = {
**self.DEFAULT_ARGS, 'lazy_init': True,
'test_mode': True,
'download': False
}
dataset = dataset_class(**cfg)
dataset._check_exists = MagicMock(return_value=False)
dataset.full_init()
# Test different backend
cfg = {
**self.DEFAULT_ARGS, 'lazy_init': True,
'data_prefix': 'http://openmmlab/mnist'
}
dataset = dataset_class(**cfg)
dataset._check_exists = MagicMock(return_value=False)
with self.assertRaisesRegex(RuntimeError, 'http://openmmlab/mnist'):
dataset.full_init()
def test_extra_repr(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
cfg = {**self.DEFAULT_ARGS, 'lazy_init': True}
dataset = dataset_class(**cfg)
self.assertIn(f'Prefix of data: \t{dataset.data_prefix["root"]}',
repr(dataset))
@classmethod
def tearDownClass(cls):
cls.tmpdir.cleanup()
class FashionMNIST(TestMNIST):
DATASET_TYPE = 'FashionMNIST'
class TestCUB(TestBaseDataset):
DATASET_TYPE = 'CUB'
@classmethod
def setUpClass(cls) -> None:
super().setUpClass()
tmpdir = tempfile.TemporaryDirectory()
cls.tmpdir = tmpdir
cls.root = tmpdir.name
cls.ann_file = 'ann_file.txt'
cls.image_folder = 'images'
cls.image_class_labels_file = 'classes.txt'
cls.train_test_split_file = 'split.txt'
cls.train_test_split_file2 = 'split2.txt'
cls.DEFAULT_ARGS = dict(
data_root=cls.root,
test_mode=False,
data_prefix=cls.image_folder,
pipeline=[],
ann_file=cls.ann_file,
image_class_labels_file=cls.image_class_labels_file,
train_test_split_file=cls.train_test_split_file)
with open(osp.join(cls.root, cls.ann_file), 'w') as f:
f.write('\n'.join([
'1 1.txt',
'2 2.txt',
'3 3.txt',
]))
with open(osp.join(cls.root, cls.image_class_labels_file), 'w') as f:
f.write('\n'.join([
'1 2',
'2 3',
'3 1',
]))
with open(osp.join(cls.root, cls.train_test_split_file), 'w') as f:
f.write('\n'.join([
'1 0',
'2 1',
'3 1',
]))
with open(osp.join(cls.root, cls.train_test_split_file2), 'w') as f:
f.write('\n'.join([
'1 0',
'2 1',
]))
def test_load_data_list(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
# Test default behavior
dataset = dataset_class(**self.DEFAULT_ARGS)
self.assertEqual(len(dataset), 2)
data_info = dataset[0]
self.assertEqual(data_info['img_path'],
osp.join(self.root, self.image_folder, '2.txt'))
self.assertEqual(data_info['gt_label'], 3 - 1)
# Test with test_mode=True
cfg = {**self.DEFAULT_ARGS, 'test_mode': True}
dataset = dataset_class(**cfg)
self.assertEqual(len(dataset), 1)
data_info = dataset[0]
self.assertEqual(data_info['img_path'],
osp.join(self.root, self.image_folder, '1.txt'))
self.assertEqual(data_info['gt_label'], 2 - 1)
# Test if the numbers of line are not match
cfg = {
**self.DEFAULT_ARGS, 'train_test_split_file':
self.train_test_split_file2
}
with self.assertRaisesRegex(AssertionError,
'sample_ids should be same'):
dataset_class(**cfg)
def test_extra_repr(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
cfg = {**self.DEFAULT_ARGS}
dataset = dataset_class(**cfg)
self.assertIn(f'Root of dataset: \t{dataset.data_root}', repr(dataset))
@classmethod
def tearDownClass(cls):
cls.tmpdir.cleanup()