mmpretrain/tests/test_models/test_utils/test_misc.py

60 lines
1.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmengine.utils import digit_version
from mmcls.models.utils import channel_shuffle, is_tracing, make_divisible
def test_make_divisible():
# test min_value is None
result = make_divisible(34, 8, None)
assert result == 32
# test when new_value > min_ratio * value
result = make_divisible(10, 8, min_ratio=0.9)
assert result == 16
# test min_value = 0.8
result = make_divisible(33, 8, min_ratio=0.8)
assert result == 32
def test_channel_shuffle():
x = torch.randn(1, 24, 56, 56)
with pytest.raises(AssertionError):
# num_channels should be divisible by groups
channel_shuffle(x, 7)
groups = 3
batch_size, num_channels, height, width = x.size()
channels_per_group = num_channels // groups
out = channel_shuffle(x, groups)
# test the output value when groups = 3
for b in range(batch_size):
for c in range(num_channels):
c_out = c % channels_per_group * groups + c // channels_per_group
for i in range(height):
for j in range(width):
assert x[b, c, i, j] == out[b, c_out, i, j]
@pytest.mark.skipif(
digit_version(torch.__version__) < digit_version('1.6.0'),
reason='torch.jit.is_tracing is not available before 1.6.0')
def test_is_tracing():
def foo(x):
if is_tracing():
return x
else:
return x.tolist()
x = torch.rand(3)
# test without trace
assert isinstance(foo(x), list)
# test with trace
traced_foo = torch.jit.trace(foo, (torch.rand(1), ))
assert isinstance(traced_foo(x), torch.Tensor)