mmpretrain/configs/tsne/swin-base-w6_imagenet.py

47 lines
1.3 KiB
Python

_base_ = '../_base_/default_runtime.py'
model = dict(
type='ImageClassifier',
backbone=dict(
type='SwinTransformer',
arch='base',
img_size=192,
out_indices=-1,
drop_path_rate=0.1,
stage_cfgs=dict(block_cfgs=dict(window_size=6))),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1024,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False))
dataset_type = 'ImageNet'
data_root = 'data/imagenet/'
data_preprocessor = dict(
num_classes=1000,
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
)
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackInputs'),
]
test_dataloader = dict(
batch_size=8,
num_workers=4,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
ann_file='meta/val.txt',
data_prefix='val',
pipeline=test_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)