mmpretrain/mmcls/models/heads/vision_transformer_head.py

122 lines
4.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import math
from collections import OrderedDict
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import build_activation_layer
from mmcv.cnn.utils.weight_init import trunc_normal_
from mmcv.runner import Sequential
from ..builder import HEADS
from .cls_head import ClsHead
@HEADS.register_module()
class VisionTransformerClsHead(ClsHead):
"""Vision Transformer classifier head.
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
hidden_dim (int): Number of the dimensions for hidden layer. Only
available during pre-training. Default None.
act_cfg (dict): The activation config. Only available during
pre-training. Defaults to Tanh.
"""
def __init__(self,
num_classes,
in_channels,
hidden_dim=None,
act_cfg=dict(type='Tanh'),
init_cfg=dict(type='Constant', layer='Linear', val=0),
*args,
**kwargs):
super(VisionTransformerClsHead, self).__init__(
init_cfg=init_cfg, *args, **kwargs)
self.in_channels = in_channels
self.num_classes = num_classes
self.hidden_dim = hidden_dim
self.act_cfg = act_cfg
if self.num_classes <= 0:
raise ValueError(
f'num_classes={num_classes} must be a positive integer')
self._init_layers()
def _init_layers(self):
if self.hidden_dim is None:
layers = [('head', nn.Linear(self.in_channels, self.num_classes))]
else:
layers = [
('pre_logits', nn.Linear(self.in_channels, self.hidden_dim)),
('act', build_activation_layer(self.act_cfg)),
('head', nn.Linear(self.hidden_dim, self.num_classes)),
]
self.layers = Sequential(OrderedDict(layers))
def init_weights(self):
super(VisionTransformerClsHead, self).init_weights()
# Modified from ClassyVision
if hasattr(self.layers, 'pre_logits'):
# Lecun norm
trunc_normal_(
self.layers.pre_logits.weight,
std=math.sqrt(1 / self.layers.pre_logits.in_features))
nn.init.zeros_(self.layers.pre_logits.bias)
def pre_logits(self, x):
if isinstance(x, tuple):
x = x[-1]
_, cls_token = x
if self.hidden_dim is None:
return cls_token
else:
x = self.layers.pre_logits(cls_token)
return self.layers.act(x)
def simple_test(self, x, softmax=True, post_process=True):
"""Inference without augmentation.
Args:
x (tuple[tuple[tensor, tensor]]): The input features.
Multi-stage inputs are acceptable but only the last stage will
be used to classify. Every item should be a tuple which
includes patch token and cls token. The cls token will be used
to classify and the shape of it should be
``(num_samples, in_channels)``.
softmax (bool): Whether to softmax the classification score.
post_process (bool): Whether to do post processing the
inference results. It will convert the output to a list.
Returns:
Tensor | list: The inference results.
- If no post processing, the output is a tensor with shape
``(num_samples, num_classes)``.
- If post processing, the output is a multi-dimentional list of
float and the dimensions are ``(num_samples, num_classes)``.
"""
x = self.pre_logits(x)
cls_score = self.layers.head(x)
if softmax:
pred = (
F.softmax(cls_score, dim=1) if cls_score is not None else None)
else:
pred = cls_score
if post_process:
return self.post_process(pred)
else:
return pred
def forward_train(self, x, gt_label, **kwargs):
x = self.pre_logits(x)
cls_score = self.layers.head(x)
losses = self.loss(cls_score, gt_label, **kwargs)
return losses