mmpretrain/configs/lenet/lenet5_mnist.py

62 lines
1.8 KiB
Python

# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='LeNet5', num_classes=10),
neck=None,
head=dict(
type='ClsHead',
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# dataset settings
dataset_type = 'MNIST'
img_norm_cfg = dict(mean=[33.46], std=[78.87], to_rgb=True)
train_pipeline = [
dict(type='Resize', scale=32),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label']),
]
test_pipeline = [
dict(type='Resize', scale=32),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
]
data = dict(
samples_per_gpu=128,
workers_per_gpu=2,
train=dict(
type=dataset_type, data_prefix='data/mnist', pipeline=train_pipeline),
val=dict(
type=dataset_type, data_prefix='data/mnist', pipeline=test_pipeline),
test=dict(
type=dataset_type, data_prefix='data/mnist', pipeline=test_pipeline))
evaluation = dict(
interval=5, metric='accuracy', metric_options={'topk': (1, )})
# optimizer
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# learning policy
param_scheduler = dict(
type='MultiStepLR', by_epoch=True, milestones=[15], gamma=0.1)
# yapf:disable
default_hooks = dict(
logger=dict(type='LoggerHook', interval=150),
checkpoint=dict(type='CheckpointHook', interval=1)
)
# yapf:enable
# train, val, test setting
train_cfg = dict(by_epoch=True, max_epochs=5)
val_cfg = dict(interval=1) # validate every epoch
test_cfg = dict()
# runtime settings
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/mnist/'
load_from = None
resume_from = None
workflow = [('train', 1)]