202 lines
8.2 KiB
YAML
202 lines
8.2 KiB
YAML
Collections:
|
|
- Name: MoCoV3
|
|
Metadata:
|
|
Training Data: ImageNet-1k
|
|
Training Techniques:
|
|
- LARS
|
|
Training Resources: 32x V100 GPUs
|
|
Architecture:
|
|
- ResNet
|
|
- ViT
|
|
- MoCo
|
|
Paper:
|
|
Title: An Empirical Study of Training Self-Supervised Vision Transformers
|
|
URL: https://arxiv.org/abs/2104.02057
|
|
README: configs/mocov3/README.md
|
|
|
|
Models:
|
|
- Name: mocov3_resnet50_8xb512-amp-coslr-100e_in1k
|
|
Metadata:
|
|
Epochs: 100
|
|
Batch Size: 4096
|
|
FLOPs: 4109364224
|
|
Parameters: 68012160
|
|
Training Data: ImageNet-1k
|
|
In Collection: MoCoV3
|
|
Results: null
|
|
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k/mocov3_resnet50_8xb512-amp-coslr-100e_in1k_20220927-f1144efa.pth
|
|
Config: configs/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k.py
|
|
Downstream:
|
|
- resnet50_mocov3-100e-pre_8xb128-linear-coslr-90e_in1k
|
|
- Name: mocov3_resnet50_8xb512-amp-coslr-300e_in1k
|
|
Metadata:
|
|
Epochs: 300
|
|
Batch Size: 4096
|
|
FLOPs: 4109364224
|
|
Parameters: 68012160
|
|
Training Data: ImageNet-1k
|
|
In Collection: MoCoV3
|
|
Results: null
|
|
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k/mocov3_resnet50_8xb512-amp-coslr-300e_in1k_20220927-1e4f3304.pth
|
|
Config: configs/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k.py
|
|
Downstream:
|
|
- resnet50_mocov3-300e-pre_8xb128-linear-coslr-90e_in1k
|
|
- Name: mocov3_resnet50_8xb512-amp-coslr-800e_in1k
|
|
Metadata:
|
|
Epochs: 800
|
|
Batch Size: 4096
|
|
FLOPs: 4109364224
|
|
Parameters: 68012160
|
|
Training Data: ImageNet-1k
|
|
In Collection: MoCoV3
|
|
Results: null
|
|
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k/mocov3_resnet50_8xb512-amp-coslr-800e_in1k_20220927-e043f51a.pth
|
|
Config: configs/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k.py
|
|
Downstream:
|
|
- resnet50_mocov3-800e-pre_8xb128-linear-coslr-90e_in1k
|
|
- Name: resnet50_mocov3-100e-pre_8xb128-linear-coslr-90e_in1k
|
|
Metadata:
|
|
Epochs: 90
|
|
Batch Size: 1024
|
|
FLOPs: 4109464576
|
|
Parameters: 25557032
|
|
Training Data: ImageNet-1k
|
|
In Collection: MoCoV3
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 69.6
|
|
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-8f7d937e.pth
|
|
Config: configs/mocov3/benchmarks/resnet50_8xb128-linear-coslr-90e_in1k.py
|
|
- Name: resnet50_mocov3-300e-pre_8xb128-linear-coslr-90e_in1k
|
|
Metadata:
|
|
Epochs: 90
|
|
Batch Size: 1024
|
|
FLOPs: 4109464576
|
|
Parameters: 25557032
|
|
Training Data: ImageNet-1k
|
|
In Collection: MoCoV3
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 72.8
|
|
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-d21ddac2.pth
|
|
Config: configs/mocov3/benchmarks/resnet50_8xb128-linear-coslr-90e_in1k.py
|
|
- Name: resnet50_mocov3-800e-pre_8xb128-linear-coslr-90e_in1k
|
|
Metadata:
|
|
Epochs: 90
|
|
Batch Size: 1024
|
|
FLOPs: 4109464576
|
|
Parameters: 25557032
|
|
Training Data: ImageNet-1k
|
|
In Collection: MoCoV3
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 74.4
|
|
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-0e97a483.pth
|
|
Config: configs/mocov3/benchmarks/resnet50_8xb128-linear-coslr-90e_in1k.py
|
|
- Name: mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k
|
|
Metadata:
|
|
Epochs: 300
|
|
Batch Size: 4096
|
|
FLOPs: 4607954304
|
|
Parameters: 84266752
|
|
Training Data: ImageNet-1k
|
|
In Collection: MoCoV3
|
|
Results: null
|
|
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k-224_20220826-08bc52f7.pth
|
|
Config: configs/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k.py
|
|
Downstream:
|
|
- vit-small-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k
|
|
- Name: vit-small-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k
|
|
Metadata:
|
|
Epochs: 90
|
|
Batch Size: 1024
|
|
FLOPs: 4607954304
|
|
Parameters: 22050664
|
|
Training Data: ImageNet-1k
|
|
In Collection: MoCoV3
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 73.6
|
|
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k/vit-small-p16_linear-8xb128-coslr-90e_in1k/vit-small-p16_linear-8xb128-coslr-90e_in1k_20220826-376674ef.pth
|
|
Config: configs/mocov3/benchmarks/vit-small-p16_8xb128-linear-coslr-90e_in1k.py
|
|
- Name: mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k
|
|
Metadata:
|
|
Epochs: 300
|
|
Batch Size: 4096
|
|
FLOPs: 17581972224
|
|
Parameters: 215678464
|
|
Training Data: ImageNet-1k
|
|
In Collection: MoCoV3
|
|
Results: null
|
|
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k-224_20220826-25213343.pth
|
|
Config: configs/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k.py
|
|
Downstream:
|
|
- vit-base-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k
|
|
- vit-base-p16_mocov3-pre_8xb64-coslr-150e_in1k
|
|
- Name: vit-base-p16_mocov3-pre_8xb64-coslr-150e_in1k
|
|
Metadata:
|
|
Epochs: 150
|
|
Batch Size: 512
|
|
FLOPs: 17581972224
|
|
Parameters: 86567656
|
|
Training Data: ImageNet-1k
|
|
In Collection: MoCoV3
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 83.0
|
|
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb64-coslr-150e_in1k/vit-base-p16_ft-8xb64-coslr-150e_in1k_20220826-f1e6c442.pth
|
|
Config: configs/mocov3/benchmarks/vit-base-p16_8xb64-coslr-150e_in1k.py
|
|
- Name: vit-base-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k
|
|
Metadata:
|
|
Epochs: 90
|
|
Batch Size: 1024
|
|
FLOPs: 17581972224
|
|
Parameters: 86567656
|
|
Training Data: ImageNet-1k
|
|
In Collection: MoCoV3
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 76.9
|
|
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/vit-base-p16_linear-8xb128-coslr-90e_in1k/vit-base-p16_linear-8xb128-coslr-90e_in1k_20220826-83be7758.pth
|
|
Config: configs/mocov3/benchmarks/vit-base-p16_8xb128-linear-coslr-90e_in1k.py
|
|
- Name: mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k
|
|
Metadata:
|
|
Epochs: 300
|
|
Batch Size: 4096
|
|
FLOPs: 61603111936
|
|
Parameters: 652781568
|
|
Training Data: ImageNet-1k
|
|
In Collection: MoCoV3
|
|
Results: null
|
|
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k-224_20220829-9b88a442.pth
|
|
Config: configs/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k.py
|
|
Downstream:
|
|
- vit-large-p16_mocov3-pre_8xb64-coslr-100e_in1k
|
|
- Name: vit-large-p16_mocov3-pre_8xb64-coslr-100e_in1k
|
|
Metadata:
|
|
Epochs: 100
|
|
Batch Size: 512
|
|
FLOPs: 61603111936
|
|
Parameters: 304326632
|
|
Training Data: ImageNet-1k
|
|
In Collection: MoCoV3
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 83.7
|
|
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k/vit-large-p16_ft-8xb64-coslr-100e_in1k/vit-large-p16_ft-8xb64-coslr-100e_in1k_20220829-878a2f7f.pth
|
|
Config: configs/mocov3/benchmarks/vit-large-p16_8xb64-coslr-100e_in1k.py
|