116 lines
4.5 KiB
YAML
116 lines
4.5 KiB
YAML
Collections:
|
|
- Name: SimMIM
|
|
Metadata:
|
|
Training Data: ImageNet-1k
|
|
Training Techniques:
|
|
- AdamW
|
|
Training Resources: 16x A100 GPUs
|
|
Architecture:
|
|
- Swin
|
|
Paper:
|
|
Title: 'SimMIM: A Simple Framework for Masked Image Modeling'
|
|
URL: https://arxiv.org/abs/2111.09886
|
|
README: configs/simmim/README.md
|
|
|
|
Models:
|
|
- Name: simmim_swin-base-w6_8xb256-amp-coslr-100e_in1k-192px
|
|
Metadata:
|
|
Epochs: 100
|
|
Batch Size: 2048
|
|
FLOPs: 18832161792
|
|
Parameters: 89874104
|
|
Training Data: ImageNet-1k
|
|
In Collection: SimMIM
|
|
Results: null
|
|
Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192_20220829-0e15782d.pth
|
|
Config: configs/simmim/simmim_swin-base-w6_8xb256-amp-coslr-100e_in1k-192px.py
|
|
Downstream:
|
|
- swin-base-w6_simmim-100e-pre_8xb256-coslr-100e_in1k-192px
|
|
- swin-base-w7_simmim-100e-pre_8xb256-coslr-100e_in1k
|
|
- Name: simmim_swin-base-w6_16xb128-amp-coslr-800e_in1k-192px
|
|
Metadata:
|
|
Epochs: 100
|
|
Batch Size: 2048
|
|
FLOPs: 18832161792
|
|
Parameters: 89874104
|
|
Training Data: ImageNet-1k
|
|
In Collection: SimMIM
|
|
Results: null
|
|
Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192_20220916-a0e931ac.pth
|
|
Config: configs/simmim/simmim_swin-base-w6_16xb128-amp-coslr-800e_in1k-192px.py
|
|
Downstream:
|
|
- swin-base-w6_simmim-800e-pre_8xb256-coslr-100e_in1k-192px
|
|
- Name: simmim_swin-large-w12_16xb128-amp-coslr-800e_in1k-192px
|
|
Metadata:
|
|
Epochs: 100
|
|
Batch Size: 2048
|
|
FLOPs: 55849130496
|
|
Parameters: 199920372
|
|
Training Data: ImageNet-1k
|
|
In Collection: SimMIM
|
|
Results: null
|
|
Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192_20220916-4ad216d3.pth
|
|
Config: configs/simmim/simmim_swin-large-w12_16xb128-amp-coslr-800e_in1k-192px.py
|
|
Downstream:
|
|
- swin-large-w14_simmim-800e-pre_8xb256-coslr-100e_in1k
|
|
- Name: swin-base-w6_simmim-100e-pre_8xb256-coslr-100e_in1k-192px
|
|
Metadata:
|
|
Epochs: 100
|
|
Batch Size: 2048
|
|
FLOPs: 11303976960
|
|
Parameters: 87750176
|
|
Training Data: ImageNet-1k
|
|
In Collection: SimMIM
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 82.7
|
|
Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192/swin-base_ft-8xb256-coslr-100e_in1k/swin-base_ft-8xb256-coslr-100e_in1k_20220829-9cf23aa1.pth
|
|
Config: configs/simmim/benchmarks/swin-base-w6_8xb256-coslr-100e_in1k-192px.py
|
|
- Name: swin-base-w7_simmim-100e-pre_8xb256-coslr-100e_in1k
|
|
Metadata:
|
|
Epochs: 100
|
|
Batch Size: 2048
|
|
FLOPs: 15466852352
|
|
Parameters: 87768224
|
|
Training Data: ImageNet-1k
|
|
In Collection: SimMIM
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 83.5
|
|
Weights: null
|
|
Config: configs/simmim/benchmarks/swin-base-w7_8xb256-coslr-100e_in1k.py
|
|
- Name: swin-base-w6_simmim-800e-pre_8xb256-coslr-100e_in1k-192px
|
|
Metadata:
|
|
Epochs: 100
|
|
Batch Size: 2048
|
|
FLOPs: 15466852352
|
|
Parameters: 87768224
|
|
Training Data: ImageNet-1k
|
|
In Collection: SimMIM
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 83.8
|
|
Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192/swin-base_ft-8xb256-coslr-100e_in1k-224/swin-base_ft-8xb256-coslr-100e_in1k-224_20221208-155cc6e6.pth
|
|
Config: configs/simmim/benchmarks/swin-base-w7_8xb256-coslr-100e_in1k.py
|
|
- Name: swin-large-w14_simmim-800e-pre_8xb256-coslr-100e_in1k
|
|
Metadata:
|
|
Epochs: 100
|
|
Batch Size: 2048
|
|
FLOPs: 38853083136
|
|
Parameters: 196848316
|
|
Training Data: ImageNet-1k
|
|
In Collection: SimMIM
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 84.8
|
|
Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192/swin-large_ft-8xb256-coslr-ws14-100e_in1k-224/swin-large_ft-8xb256-coslr-ws14-100e_in1k-224_20220916-d4865790.pth
|
|
Config: configs/simmim/benchmarks/swin-large-w14_8xb256-coslr-100e_in1k.py
|