mmpretrain/tests/test_models/test_backbones/test_mobilenet_v1.py

115 lines
3.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from torch.nn.modules import GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm
from mmpretrain.models.backbones import MobileNetV1
def is_norm(modules):
"""Check if is one of the norms."""
if isinstance(modules, (GroupNorm, _BatchNorm)):
return True
return False
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_mobilenetv1_backbone():
with pytest.raises(TypeError):
# pretrained must be a string path
model = MobileNetV1()
model.init_weights(pretrained=0)
with pytest.raises(ValueError):
# frozen_stages must in range(-1, 8)
MobileNetV1(frozen_stages=8)
# Test MobileNetV2 with first stage frozen
frozen_stages = 1
model = MobileNetV1(frozen_stages=frozen_stages)
model.init_weights()
model.train()
for mod in model.modules():
for param in mod.parameters():
assert param.requires_grad is False
for i in range(1, frozen_stages + 1):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# Test MobileNetV2 with norm_eval=True
model = MobileNetV1(norm_eval=True)
model.init_weights()
model.train()
assert check_norm_state(model.modules(), False)
# Test MobileNetV2 forward with dict(type='ReLU')
model = MobileNetV1(act_cfg=dict(type='ReLU'))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size((1, 16, 112, 112))
assert feat[1].shape == torch.Size((1, 24, 56, 56))
assert feat[2].shape == torch.Size((1, 32, 28, 28))
assert feat[3].shape == torch.Size((1, 64, 14, 14))
assert feat[4].shape == torch.Size((1, 96, 14, 14))
assert feat[5].shape == torch.Size((1, 160, 7, 7))
assert feat[6].shape == torch.Size((1, 320, 7, 7))
# Test MobileNetV2 with BatchNorm forward
model = MobileNetV1()
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size((1, 16, 112, 112))
assert feat[1].shape == torch.Size((1, 24, 56, 56))
assert feat[2].shape == torch.Size((1, 32, 28, 28))
assert feat[3].shape == torch.Size((1, 64, 14, 14))
assert feat[4].shape == torch.Size((1, 96, 14, 14))
assert feat[5].shape == torch.Size((1, 160, 7, 7))
assert feat[6].shape == torch.Size((1, 320, 7, 7))
# Test MobileNetV2 with GroupNorm forward
model = MobileNetV1(
norm_cfg=dict(type='GN', num_groups=2, requires_grad=True))
for m in model.modules():
if is_norm(m):
assert isinstance(m, GroupNorm)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size((1, 16, 112, 112))
assert feat[1].shape == torch.Size((1, 24, 56, 56))
assert feat[2].shape == torch.Size((1, 32, 28, 28))
assert feat[3].shape == torch.Size((1, 64, 14, 14))
assert feat[4].shape == torch.Size((1, 96, 14, 14))
assert feat[5].shape == torch.Size((1, 160, 7, 7))
assert feat[6].shape == torch.Size((1, 320, 7, 7))