mirror of
https://github.com/open-mmlab/mmpretrain.git
synced 2025-06-03 14:59:18 +08:00
* add pth converter * minor update on config files, add metafile and readme * add missing readme and minor fixes * minor fixes * Update config names and checkpoint download link * Update model_zoo.md Co-authored-by: mzr1996 <mzr1996@163.com>
26 KiB
26 KiB
Model Zoo
ImageNet
ImageNet has multiple versions, but the most commonly used one is ILSVRC 2012. The ResNet family models below are trained by standard data augmentations, i.e., RandomResizedCrop, RandomHorizontalFlip and Normalize.
Model | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
---|---|---|---|---|---|---|
VGG-11 | 132.86 | 7.63 | 68.75 | 88.87 | config | model | log |
VGG-13 | 133.05 | 11.34 | 70.02 | 89.46 | config | model | log |
VGG-16 | 138.36 | 15.5 | 71.62 | 90.49 | config | model | log |
VGG-19 | 143.67 | 19.67 | 72.41 | 90.80 | config | model | log |
VGG-11-BN | 132.87 | 7.64 | 70.75 | 90.12 | config | model | log |
VGG-13-BN | 133.05 | 11.36 | 72.15 | 90.71 | config | model | log |
VGG-16-BN | 138.37 | 15.53 | 73.72 | 91.68 | config | model | log |
VGG-19-BN | 143.68 | 19.7 | 74.70 | 92.24 | config | model | log |
RepVGG-A0* | 9.11(train) | 8.31 (deploy) | 1.52 (train) | 1.36 (deploy) | 72.41 | 90.50 | config (train) | config (deploy) | model | log |
RepVGG-A1* | 14.09 (train) | 12.79 (deploy) | 2.64 (train) | 2.37 (deploy) | 74.47 | 91.85 | config (train) | config (deploy) | model | log |
RepVGG-A2* | 28.21 (train) | 25.5 (deploy) | 5.7 (train) | 5.12 (deploy) | 76.48 | 93.01 | config (train) | config (deploy) | model | log |
RepVGG-B0* | 15.82 (train) | 14.34 (deploy) | 3.42 (train) | 3.06 (deploy) | 75.14 | 92.42 | config (train) | config (deploy) | model | log |
RepVGG-B1* | 57.42 (train) | 51.83 (deploy) | 13.16 (train) | 11.82 (deploy) | 78.37 | 94.11 | config (train) | config (deploy) | model | log |
RepVGG-B1g2* | 45.78 (train) | 41.36 (deploy) | 9.82 (train) | 8.82 (deploy) | 77.79 | 93.88 | config (train) | config (deploy) | model | log |
RepVGG-B1g4* | 39.97 (train) | 36.13 (deploy) | 8.15 (train) | 7.32 (deploy) | 77.58 | 93.84 | config (train) | config (deploy) | model | log |
RepVGG-B2* | 89.02 (train) | 80.32 (deploy) | 20.46 (train) | 18.39 (deploy) | 78.78 | 94.42 | config (train) | config (deploy) | model | log |
RepVGG-B2g4* | 61.76 (train) | 55.78 (deploy) | 12.63 (train) | 11.34 (deploy) | 79.38 | 94.68 | config (train) | config (deploy) | model | log |
RepVGG-B3* | 123.09 (train) | 110.96 (deploy) | 29.17 (train) | 26.22 (deploy) | 80.52 | 95.26 | config (train) | config (deploy) | model | log |
RepVGG-B3g4* | 83.83 (train) | 75.63 (deploy) | 17.9 (train) | 16.08 (deploy) | 80.22 | 95.10 | config (train) | config (deploy) | model | log |
RepVGG-D2se* | 133.33 (train) | 120.39 (deploy) | 36.56 (train) | 32.85 (deploy) | 81.81 | 95.94 | config (train) | config (deploy) | model | log |
ResNet-18 | 11.69 | 1.82 | 70.07 | 89.44 | config | model | log |
ResNet-34 | 21.8 | 3.68 | 73.85 | 91.53 | config | model | log |
ResNet-50 | 25.56 | 4.12 | 76.55 | 93.15 | config | model | log |
ResNet-101 | 44.55 | 7.85 | 78.18 | 94.03 | config | model | log |
ResNet-152 | 60.19 | 11.58 | 78.63 | 94.16 | config | model | log |
Res2Net-50-14w-8s* | 25.06 | 4.22 | 78.14 | 93.85 | config | model | log |
Res2Net-50-26w-8s* | 48.40 | 8.39 | 79.20 | 94.36 | config | model | log |
Res2Net-101-26w-4s* | 45.21 | 8.12 | 79.19 | 94.44 | config | model | log |
ResNeSt-50* | 27.48 | 5.41 | 81.13 | 95.59 | model | log | |
ResNeSt-101* | 48.28 | 10.27 | 82.32 | 96.24 | model | log | |
ResNeSt-200* | 70.2 | 17.53 | 82.41 | 96.22 | model | log | |
ResNeSt-269* | 110.93 | 22.58 | 82.70 | 96.28 | model | log | |
ResNetV1D-50 | 25.58 | 4.36 | 77.54 | 93.57 | config | model | log |
ResNetV1D-101 | 44.57 | 8.09 | 78.93 | 94.48 | config | model | log |
ResNetV1D-152 | 60.21 | 11.82 | 79.41 | 94.7 | config | model | log |
ResNeXt-32x4d-50 | 25.03 | 4.27 | 77.90 | 93.66 | config | model | log |
ResNeXt-32x4d-101 | 44.18 | 8.03 | 78.71 | 94.12 | config | model | log |
ResNeXt-32x8d-101 | 88.79 | 16.5 | 79.23 | 94.58 | config | model | log |
ResNeXt-32x4d-152 | 59.95 | 11.8 | 78.93 | 94.41 | config | model | log |
SE-ResNet-50 | 28.09 | 4.13 | 77.74 | 93.84 | config | model | log |
SE-ResNet-101 | 49.33 | 7.86 | 78.26 | 94.07 | config | model | log |
ShuffleNetV1 1.0x (group=3) | 1.87 | 0.146 | 68.13 | 87.81 | config | model | log |
ShuffleNetV2 1.0x | 2.28 | 0.149 | 69.55 | 88.92 | config | model | log |
MobileNet V2 | 3.5 | 0.319 | 71.86 | 90.42 | config | model | log |
ViT-B/16* | 86.86 | 33.03 | 85.43 | 97.77 | config | model | log |
ViT-B/32* | 88.3 | 8.56 | 84.01 | 97.08 | config | model | log |
ViT-L/16* | 304.72 | 116.68 | 85.63 | 97.63 | config | model | log |
Swin-Transformer tiny | 28.29 | 4.36 | 81.18 | 95.61 | config | model | log |
Swin-Transformer small | 49.61 | 8.52 | 83.02 | 96.29 | config | model | log |
Swin-Transformer base | 87.77 | 15.14 | 83.36 | 96.44 | config | model | log |
Transformer in Transformer small* | 23.76 | 3.36 | 81.52 | 95.73 | config | model | log |
T2T-ViT_t-14* | 21.47 | 4.34 | 81.69 | 95.85 | config | model | log |
T2T-ViT_t-19* | 39.08 | 7.80 | 82.43 | 96.08 | config | model | log |
T2T-ViT_t-24* | 64.00 | 12.69 | 82.55 | 96.06 | config | model | log |
Mixer-B/16* | 59.88 | 12.61 | 76.68 | 92.25 | config | model | log |
Mixer-L/16* | 208.2 | 44.57 | 72.34 | 88.02 | config | model | log |
Models with * are converted from other repos, others are trained by ourselves.
CIFAR10
Model | Params(M) | Flops(G) | Top-1 (%) | Config | Download |
---|---|---|---|---|---|
ResNet-18-b16x8 | 11.17 | 0.56 | 94.82 | config | |
ResNet-34-b16x8 | 21.28 | 1.16 | 95.34 | config | |
ResNet-50-b16x8 | 23.52 | 1.31 | 95.55 | config | |
ResNet-101-b16x8 | 42.51 | 2.52 | 95.58 | config | |
ResNet-152-b16x8 | 58.16 | 3.74 | 95.76 | config |