36 lines
826 B
ReStructuredText
36 lines
826 B
ReStructuredText
.. role:: hidden
|
|
:class: hidden-section
|
|
|
|
Batch Augmentation
|
|
===================================
|
|
|
|
Batch augmentation is the augmentation which involve multiple samples, such as Mixup and CutMix.
|
|
|
|
In MMClassification, these batch augmentation is used as a part of :ref:`classifiers`. A typical usage is as below:
|
|
|
|
.. code-block:: python
|
|
|
|
model = dict(
|
|
backbone = ...,
|
|
neck = ...,
|
|
head = ...,
|
|
train_cfg=dict(augments=[
|
|
dict(type='BatchMixup', alpha=0.8, prob=0.5, num_classes=num_classes),
|
|
dict(type='BatchCutMix', alpha=1.0, prob=0.5, num_classes=num_classes),
|
|
]))
|
|
)
|
|
|
|
.. currentmodule:: mmcls.models.utils.augment
|
|
|
|
Mixup
|
|
-----
|
|
.. autoclass:: BatchMixupLayer
|
|
|
|
CutMix
|
|
------
|
|
.. autoclass:: BatchCutMixLayer
|
|
|
|
ResizeMix
|
|
---------
|
|
.. autoclass:: BatchResizeMixLayer
|