mmpretrain/configs/regnet/regnetx-400mf_8xb128_in1k.py

58 lines
1.6 KiB
Python

_base_ = [
'../_base_/models/regnet/regnetx_400mf.py',
'../_base_/datasets/imagenet_bs32.py',
'../_base_/schedules/imagenet_bs1024_coslr.py',
'../_base_/default_runtime.py'
]
# dataset settings
preprocess_cfg = dict(
# BGR format normalization parameters
mean=[103.53, 116.28, 123.675],
std=[57.375, 57.12, 58.395],
to_rgb=False, # The checkpoints from PyCls requires BGR format inputs.
)
# lighting params, in order of BGR, from repo. pycls
EIGVAL = [0.2175, 0.0188, 0.0045]
EIGVEC = [
[-0.5836, -0.6948, 0.4203],
[-0.5808, -0.0045, -0.814],
[-0.5675, 0.7192, 0.4009],
]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=224),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(
type='Lighting',
eigval=EIGVAL,
eigvec=EIGVEC,
alphastd=25.5, # because the value range of images is [0,255]
to_rgb=False),
dict(type='PackClsInputs'),
]
train_dataloader = dict(batch_size=128, dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(batch_size=128)
test_dataloader = dict(batch_size=128)
# schedule settings
# sgd with nesterov, base ls is 0.8 for batch_size 1024,
optim_wrapper = dict(optimizer=dict(lr=0.8, nesterov=True))
# runtime settings
# Precise BN hook will update the bn stats, so this hook should be executed
# before CheckpointHook, which has priority of 'NORMAL'. So set the
# priority of PreciseBNHook to 'ABOVE_NORMAL' here.
custom_hooks = [
dict(
type='PreciseBNHook',
num_samples=8192,
interval=1,
priority='ABOVE_NORMAL')
]