mmpretrain/tests/test_backbones/test_shufflenet_v2.py

146 lines
4.3 KiB
Python

import pytest
import torch
from torch.nn.modules import GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm
from mmcls.models.backbones import ShuffleNetv2
from mmcls.models.backbones.shufflenet_v2 import InvertedResidual
def is_block(modules):
"""Check if is ResNet building block."""
if isinstance(modules, (InvertedResidual, )):
return True
return False
def is_norm(modules):
"""Check if is one of the norms."""
if isinstance(modules, (GroupNorm, _BatchNorm)):
return True
return False
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_shufflenetv2_invertedresidual():
with pytest.raises(ValueError):
# stride must be in [1, 2]
InvertedResidual(24, 16, stride=3)
with pytest.raises(AssertionError):
# when stride==1, 16 == branch_features << 1
InvertedResidual(24, 64, stride=1)
# Test InvertedResidual forward
block = InvertedResidual(24, 64, stride=2)
x = torch.randn(1, 24, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 28, 28])
# Test InvertedResidual with checkpoint forward
block = InvertedResidual(24, 24, stride=1, with_cp=True)
x = torch.randn(1, 24, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 24, 56, 56])
def test_ShuffleNetv2_backbone():
with pytest.raises(ValueError):
# groups must in 0.5, 1.0, 1.5, 2.0]
ShuffleNetv2(widen_factor=3.0)
# Test ShuffleNetv2 norm state
model = ShuffleNetv2()
model.init_weights()
model.train()
assert check_norm_state(model.modules(), False)
# Test ShuffleNetv2 with first stage frozen
frozen_stages = 1
model = ShuffleNetv2(frozen_stages=frozen_stages)
model.init_weights()
model.train()
for layer in [model.conv1]:
for param in layer.parameters():
assert param.requires_grad is False
for i in range(1, frozen_stages + 1):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# Test ShuffleNetv2 with bn frozen
model = ShuffleNetv2(bn_frozen=True)
model.init_weights()
model.train()
for i in range(1, 4):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for params in mod.parameters():
params.requires_grad = False
# Test ShuffleNetv2 forward with widen_factor=1.0
model = ShuffleNetv2(widen_factor=1.0)
model.init_weights()
model.train()
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 232, 28, 28])
assert feat[1].shape == torch.Size([1, 464, 14, 14])
assert feat[2].shape == torch.Size([1, 1024, 7, 7])
assert feat[3].shape == torch.Size([1, 1024, 7, 7])
# Test ShuffleNetv2 forward with layers 1 2 forward
model = ShuffleNetv2(widen_factor=1.0, out_indices=(1, 2))
model.init_weights()
model.train()
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 3
assert feat[0].shape == torch.Size([1, 464, 14, 14])
assert feat[1].shape == torch.Size([1, 1024, 7, 7])
# Test ShuffleNetv2 forward with checkpoint forward
model = ShuffleNetv2(widen_factor=1.0, with_cp=True)
model.init_weights()
model.train()
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 232, 28, 28])
assert feat[1].shape == torch.Size([1, 464, 14, 14])
assert feat[2].shape == torch.Size([1, 1024, 7, 7])
assert feat[3].shape == torch.Size([1, 1024, 7, 7])