26 lines
864 B
Python
26 lines
864 B
Python
_base_ = ['../_base_/datasets/voc_bs16.py', '../_base_/default_runtime.py']
|
|
|
|
# use different head for multilabel task
|
|
model = dict(
|
|
type='ImageClassifier',
|
|
backbone=dict(type='VGG', depth=16, num_classes=20),
|
|
neck=None,
|
|
head=dict(
|
|
type='MultiLabelClsHead',
|
|
loss=dict(type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)))
|
|
|
|
# load model pretrained on imagenet
|
|
load_from = 'https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_batch256_imagenet_20210208-db26f1a5.pth' # noqa
|
|
|
|
# optimizer
|
|
optimizer = dict(
|
|
type='SGD',
|
|
lr=0.001,
|
|
momentum=0.9,
|
|
weight_decay=0,
|
|
paramwise_cfg=dict(custom_keys={'.backbone.classifier': dict(lr_mult=10)}))
|
|
optimizer_config = dict(grad_clip=None)
|
|
# learning policy
|
|
lr_config = dict(policy='step', step=20, gamma=0.1)
|
|
runner = dict(type='EpochBasedRunner', max_epochs=40)
|