mmpretrain/configs/vision_transformer/vit-base-p16_ft-4xb544-ipu_...

116 lines
3.2 KiB
Python

_base_ = [
'../_base_/models/vit-base-p16.py',
'../_base_/datasets/imagenet_bs64_pil_resize_autoaug.py',
'../_base_/default_runtime.py'
]
# specific to vit pretrain
paramwise_cfg = dict(custom_keys={
'.cls_token': dict(decay_mult=0.0),
'.pos_embed': dict(decay_mult=0.0)
})
pretrained = 'https://download.openmmlab.com/mmclassification/v0/vit/pretrain/vit-base-p16_3rdparty_pt-64xb64_in1k-224_20210928-02284250.pth' # noqa
model = dict(
head=dict(
loss=dict(type='CrossEntropyLoss', loss_weight=1.0, _delete_=True), ),
backbone=dict(
img_size=224,
init_cfg=dict(
type='Pretrained',
checkpoint=pretrained,
_delete_=True,
prefix='backbone')))
img_norm_cfg = dict(
mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', size=224, backend='pillow'),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='ToHalf', keys=['img']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', size=(224, -1), backend='pillow'),
dict(type='CenterCrop', crop_size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToHalf', keys=['img']),
dict(type='Collect', keys=['img'])
]
# change batch size
data = dict(
samples_per_gpu=17,
workers_per_gpu=16,
drop_last=True,
train=dict(pipeline=train_pipeline),
train_dataloader=dict(mode='async'),
val=dict(pipeline=test_pipeline, ),
val_dataloader=dict(samples_per_gpu=4, workers_per_gpu=1),
test=dict(pipeline=test_pipeline),
test_dataloader=dict(samples_per_gpu=4, workers_per_gpu=1))
# remove clip-norm
optimizer_config = dict()
# optimizer
optimizer = dict(
type='SGD',
lr=0.08,
weight_decay=1e-5,
momentum=0.9,
paramwise_cfg=paramwise_cfg,
)
# learning policy
lr_config = dict(
policy='CosineAnnealing',
min_lr=0,
warmup='linear',
warmup_iters=800,
warmup_ratio=0.02,
)
# ipu cfg
# model partition config
ipu_model_cfg = dict(
train_split_edges=[
dict(layer_to_call='backbone.patch_embed', ipu_id=0),
dict(layer_to_call='backbone.layers.3', ipu_id=1),
dict(layer_to_call='backbone.layers.6', ipu_id=2),
dict(layer_to_call='backbone.layers.9', ipu_id=3)
],
train_ckpt_nodes=['backbone.layers.{}'.format(i) for i in range(12)])
# device config
options_cfg = dict(
randomSeed=42,
partialsType='half',
train_cfg=dict(
executionStrategy='SameAsIpu',
Training=dict(gradientAccumulation=32),
availableMemoryProportion=[0.3, 0.3, 0.3, 0.3],
),
eval_cfg=dict(deviceIterations=1, ),
)
# add model partition config and device config to runner
runner = dict(
type='IterBasedRunner',
ipu_model_cfg=ipu_model_cfg,
options_cfg=options_cfg,
max_iters=5000)
checkpoint_config = dict(interval=1000)
fp16 = dict(loss_scale=256.0, velocity_accum_type='half', accum_type='half')