mmpretrain/configs/vig/metafile.yml
szwlh-c c98dc4555c
[Feature] Support VIG Backbone. (#1304)
* 添加vig源文件

* 某些模块修改到mmcls风格

* 修改到mmcls风格

* 修改

* 添加VIG模型及源文件

* update model file

* update model file and config

* change class name and some variable name

* change class name and some variable name

* update

* update

* change nn.BatchNorm to mmcv.cnn.build_norm_layer

* update

* change nn.Seq to mmcls

* change backbone to stage_blocks

* add vig_head

* update

* update config file

* update

* add readme and metafile

* update model-index.yml

* update model file

* rename config file and add docstring

* variable rename

* update readme and metafile

* update readme

* update

* Update VIG backbone implementation and docs.

* Fix configs.

Co-authored-by: mzr1996 <mzr1996@163.com>
2023-01-17 16:55:56 +08:00

135 lines
5.1 KiB
YAML

Collections:
- Name: VIG
Metadata:
Training Data: ImageNet-1k
Architecture:
- Vision GNN
Paper:
Title: 'Vision GNN: An Image is Worth Graph of Nodes'
URL: https://arxiv.org/abs/2206.00272
README: configs/vig/README.md
Code:
URL: null
Version: null
Models:
- Name: vig-tiny_3rdparty_in1k
Metadata:
FLOPs: 1309000000
Parameters: 7185000
Training Data: ImageNet-1k
In Collection: VIG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 74.40
Top 5 Accuracy: 92.34
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vig/vig-tiny_3rdparty_in1k_20230117-6414c684.pth
Config: configs/vig/vig-tiny_8xb128_in1k.py
Converted From:
Weights: https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/vig/vig_ti_74.5.pth
Code: https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/vig_pytorch
- Name: vig-small_3rdparty_in1k
Metadata:
FLOPs: 4535000000
Parameters: 22748000
Training Data: ImageNet-1k
In Collection: VIG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 80.61
Top 5 Accuracy: 95.28
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vig/vig-small_3rdparty_in1k_20230117-5338bf3b.pth
Config: configs/vig/vig-small_8xb128_in1k.py
Converted From:
Weights: https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/vig/vig_s_80.6.pth
Code: https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/vig_pytorch
- Name: vig-base_3rdparty_in1k
Metadata:
FLOPs: 17681000000
Parameters: 20685000
Training Data: ImageNet-1k
In Collection: VIG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 82.62
Top 5 Accuracy: 96.04
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vig/vig-base_3rdparty_in1k_20230117-92f6f12f.pth
Config: configs/vig/vig-base_8xb128_in1k.py
Converted From:
Weights: https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/vig/vig_b_82.6.pth
Code: https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/vig_pytorch
- Name: pvig-tiny_3rdparty_in1k
Metadata:
FLOPs: 1714000000
Parameters: 9458000
Training Data: ImageNet-1k
In Collection: VIG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 78.38
Top 5 Accuracy: 94.38
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vig/pvig-tiny_3rdparty_in1k_20230117-eb77347d.pth
Config: configs/vig/pvig-tiny_8xb128_in1k.py
Converted From:
Weights: https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/pyramid-vig/pvig_ti_78.5.pth.tar
Code: https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/vig_pytorch
- Name: pvig-small_3rdparty_in1k
Metadata:
FLOPs: 4572000000
Parameters: 29024000
Training Data: ImageNet-1k
In Collection: VIG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 82.00
Top 5 Accuracy: 95.97
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vig/pvig-small_3rdparty_in1k_20230117-9433dc96.pth
Config: configs/vig/pvig-small_8xb128_in1k.py
Converted From:
Weights: https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/pyramid-vig/pvig_s_82.1.pth.tar
Code: https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/vig_pytorch
- Name: pvig-medium_3rdparty_in1k
Metadata:
FLOPs: 8886000000
Parameters: 51682000
Training Data: ImageNet-1k
In Collection: VIG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.12
Top 5 Accuracy: 96.35
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vig/pvig-medium_3rdparty_in1k_20230117-21057a6d.pth
Config: configs/vig/pvig-medium_8xb128_in1k.py
Converted From:
Weights: https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/pyramid-vig/pvig_m_83.1.pth.tar
Code: https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/vig_pytorch
- Name: pvig-base_3rdparty_in1k
Metadata:
FLOPs: 16861000000
Parameters: 95213000
Training Data: ImageNet-1k
In Collection: VIG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.59
Top 5 Accuracy: 96.52
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vig/pvig-base_3rdparty_in1k_20230117-dbab3c85.pth
Config: configs/vig/pvig-base_8xb128_in1k.py
Converted From:
Weights: https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/pyramid-vig/pvig_b_83.66.pth.tar
Code: https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/vig_pytorch