mmpretrain/tests/test_models/test_backbones/test_densenet.py

96 lines
2.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmcls.models.backbones import DenseNet
def test_assertion():
with pytest.raises(AssertionError):
DenseNet(arch='unknown')
with pytest.raises(AssertionError):
# DenseNet arch dict should include essential_keys,
DenseNet(arch=dict(channels=[2, 3, 4, 5]))
with pytest.raises(AssertionError):
# DenseNet out_indices should be valid depth.
DenseNet(out_indices=-100)
def test_DenseNet():
# Test forward
model = DenseNet(arch='121')
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 1
assert feat[0].shape == torch.Size([1, 1024, 7, 7])
# Test memory efficient option
model = DenseNet(arch='121', memory_efficient=True)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 1
assert feat[0].shape == torch.Size([1, 1024, 7, 7])
# Test drop rate
model = DenseNet(arch='121', drop_rate=0.05)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 1
assert feat[0].shape == torch.Size([1, 1024, 7, 7])
# Test forward with multiple outputs
model = DenseNet(arch='121', out_indices=(0, 1, 2, 3))
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 128, 28, 28])
assert feat[1].shape == torch.Size([1, 256, 14, 14])
assert feat[2].shape == torch.Size([1, 512, 7, 7])
assert feat[3].shape == torch.Size([1, 1024, 7, 7])
# Test with custom arch
model = DenseNet(
arch={
'growth_rate': 20,
'depths': [4, 8, 12, 16, 20],
'init_channels': 40,
},
out_indices=(0, 1, 2, 3, 4))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 5
assert feat[0].shape == torch.Size([1, 60, 28, 28])
assert feat[1].shape == torch.Size([1, 110, 14, 14])
assert feat[2].shape == torch.Size([1, 175, 7, 7])
assert feat[3].shape == torch.Size([1, 247, 3, 3])
assert feat[4].shape == torch.Size([1, 647, 3, 3])
# Test frozen_stages
model = DenseNet(arch='121', out_indices=(0, 1, 2, 3), frozen_stages=2)
model.init_weights()
model.train()
for i in range(2):
assert not model.stages[i].training
assert not model.transitions[i].training
for i in range(2, 4):
assert model.stages[i].training
assert model.transitions[i].training