260 lines
8.8 KiB
Python
260 lines
8.8 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import pytest
|
|
import torch
|
|
from torch.nn.modules import GroupNorm
|
|
from torch.nn.modules.batchnorm import _BatchNorm
|
|
|
|
from mmcls.models.backbones import MobileNetV2
|
|
from mmcls.models.backbones.mobilenet_v2 import InvertedResidual
|
|
|
|
|
|
def is_block(modules):
|
|
"""Check if is ResNet building block."""
|
|
if isinstance(modules, (InvertedResidual, )):
|
|
return True
|
|
return False
|
|
|
|
|
|
def is_norm(modules):
|
|
"""Check if is one of the norms."""
|
|
if isinstance(modules, (GroupNorm, _BatchNorm)):
|
|
return True
|
|
return False
|
|
|
|
|
|
def check_norm_state(modules, train_state):
|
|
"""Check if norm layer is in correct train state."""
|
|
for mod in modules:
|
|
if isinstance(mod, _BatchNorm):
|
|
if mod.training != train_state:
|
|
return False
|
|
return True
|
|
|
|
|
|
def test_mobilenetv2_invertedresidual():
|
|
|
|
with pytest.raises(AssertionError):
|
|
# stride must be in [1, 2]
|
|
InvertedResidual(16, 24, stride=3, expand_ratio=6)
|
|
|
|
# Test InvertedResidual with checkpoint forward, stride=1
|
|
block = InvertedResidual(16, 24, stride=1, expand_ratio=6)
|
|
x = torch.randn(1, 16, 56, 56)
|
|
x_out = block(x)
|
|
assert x_out.shape == torch.Size((1, 24, 56, 56))
|
|
|
|
# Test InvertedResidual with expand_ratio=1
|
|
block = InvertedResidual(16, 16, stride=1, expand_ratio=1)
|
|
assert len(block.conv) == 2
|
|
|
|
# Test InvertedResidual with use_res_connect
|
|
block = InvertedResidual(16, 16, stride=1, expand_ratio=6)
|
|
x = torch.randn(1, 16, 56, 56)
|
|
x_out = block(x)
|
|
assert block.use_res_connect is True
|
|
assert x_out.shape == torch.Size((1, 16, 56, 56))
|
|
|
|
# Test InvertedResidual with checkpoint forward, stride=2
|
|
block = InvertedResidual(16, 24, stride=2, expand_ratio=6)
|
|
x = torch.randn(1, 16, 56, 56)
|
|
x_out = block(x)
|
|
assert x_out.shape == torch.Size((1, 24, 28, 28))
|
|
|
|
# Test InvertedResidual with checkpoint forward
|
|
block = InvertedResidual(16, 24, stride=1, expand_ratio=6, with_cp=True)
|
|
assert block.with_cp
|
|
x = torch.randn(1, 16, 56, 56)
|
|
x_out = block(x)
|
|
assert x_out.shape == torch.Size((1, 24, 56, 56))
|
|
|
|
# Test InvertedResidual with act_cfg=dict(type='ReLU')
|
|
block = InvertedResidual(
|
|
16, 24, stride=1, expand_ratio=6, act_cfg=dict(type='ReLU'))
|
|
x = torch.randn(1, 16, 56, 56)
|
|
x_out = block(x)
|
|
assert x_out.shape == torch.Size((1, 24, 56, 56))
|
|
|
|
|
|
def test_mobilenetv2_backbone():
|
|
with pytest.raises(TypeError):
|
|
# pretrained must be a string path
|
|
model = MobileNetV2()
|
|
model.init_weights(pretrained=0)
|
|
|
|
with pytest.raises(ValueError):
|
|
# frozen_stages must in range(-1, 8)
|
|
MobileNetV2(frozen_stages=8)
|
|
|
|
with pytest.raises(ValueError):
|
|
# out_indices in range(0, 8)
|
|
MobileNetV2(out_indices=[8])
|
|
|
|
# Test MobileNetV2 with first stage frozen
|
|
frozen_stages = 1
|
|
model = MobileNetV2(frozen_stages=frozen_stages)
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
for mod in model.conv1.modules():
|
|
for param in mod.parameters():
|
|
assert param.requires_grad is False
|
|
for i in range(1, frozen_stages + 1):
|
|
layer = getattr(model, f'layer{i}')
|
|
for mod in layer.modules():
|
|
if isinstance(mod, _BatchNorm):
|
|
assert mod.training is False
|
|
for param in layer.parameters():
|
|
assert param.requires_grad is False
|
|
|
|
# Test MobileNetV2 with norm_eval=True
|
|
model = MobileNetV2(norm_eval=True)
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
assert check_norm_state(model.modules(), False)
|
|
|
|
# Test MobileNetV2 forward with widen_factor=1.0
|
|
model = MobileNetV2(widen_factor=1.0, out_indices=range(0, 8))
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
assert check_norm_state(model.modules(), True)
|
|
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
feat = model(imgs)
|
|
assert len(feat) == 8
|
|
assert feat[0].shape == torch.Size((1, 16, 112, 112))
|
|
assert feat[1].shape == torch.Size((1, 24, 56, 56))
|
|
assert feat[2].shape == torch.Size((1, 32, 28, 28))
|
|
assert feat[3].shape == torch.Size((1, 64, 14, 14))
|
|
assert feat[4].shape == torch.Size((1, 96, 14, 14))
|
|
assert feat[5].shape == torch.Size((1, 160, 7, 7))
|
|
assert feat[6].shape == torch.Size((1, 320, 7, 7))
|
|
assert feat[7].shape == torch.Size((1, 1280, 7, 7))
|
|
|
|
# Test MobileNetV2 forward with widen_factor=0.5
|
|
model = MobileNetV2(widen_factor=0.5, out_indices=range(0, 7))
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
feat = model(imgs)
|
|
assert len(feat) == 7
|
|
assert feat[0].shape == torch.Size((1, 8, 112, 112))
|
|
assert feat[1].shape == torch.Size((1, 16, 56, 56))
|
|
assert feat[2].shape == torch.Size((1, 16, 28, 28))
|
|
assert feat[3].shape == torch.Size((1, 32, 14, 14))
|
|
assert feat[4].shape == torch.Size((1, 48, 14, 14))
|
|
assert feat[5].shape == torch.Size((1, 80, 7, 7))
|
|
assert feat[6].shape == torch.Size((1, 160, 7, 7))
|
|
|
|
# Test MobileNetV2 forward with widen_factor=2.0
|
|
model = MobileNetV2(widen_factor=2.0)
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
feat = model(imgs)
|
|
assert len(feat) == 1
|
|
assert feat[0].shape == torch.Size((1, 2560, 7, 7))
|
|
|
|
# Test MobileNetV2 forward with out_indices=None
|
|
model = MobileNetV2(widen_factor=1.0)
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
feat = model(imgs)
|
|
assert len(feat) == 1
|
|
assert feat[0].shape == torch.Size((1, 1280, 7, 7))
|
|
|
|
# Test MobileNetV2 forward with dict(type='ReLU')
|
|
model = MobileNetV2(
|
|
widen_factor=1.0, act_cfg=dict(type='ReLU'), out_indices=range(0, 7))
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
feat = model(imgs)
|
|
assert len(feat) == 7
|
|
assert feat[0].shape == torch.Size((1, 16, 112, 112))
|
|
assert feat[1].shape == torch.Size((1, 24, 56, 56))
|
|
assert feat[2].shape == torch.Size((1, 32, 28, 28))
|
|
assert feat[3].shape == torch.Size((1, 64, 14, 14))
|
|
assert feat[4].shape == torch.Size((1, 96, 14, 14))
|
|
assert feat[5].shape == torch.Size((1, 160, 7, 7))
|
|
assert feat[6].shape == torch.Size((1, 320, 7, 7))
|
|
|
|
# Test MobileNetV2 with BatchNorm forward
|
|
model = MobileNetV2(widen_factor=1.0, out_indices=range(0, 7))
|
|
for m in model.modules():
|
|
if is_norm(m):
|
|
assert isinstance(m, _BatchNorm)
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
feat = model(imgs)
|
|
assert len(feat) == 7
|
|
assert feat[0].shape == torch.Size((1, 16, 112, 112))
|
|
assert feat[1].shape == torch.Size((1, 24, 56, 56))
|
|
assert feat[2].shape == torch.Size((1, 32, 28, 28))
|
|
assert feat[3].shape == torch.Size((1, 64, 14, 14))
|
|
assert feat[4].shape == torch.Size((1, 96, 14, 14))
|
|
assert feat[5].shape == torch.Size((1, 160, 7, 7))
|
|
assert feat[6].shape == torch.Size((1, 320, 7, 7))
|
|
|
|
# Test MobileNetV2 with GroupNorm forward
|
|
model = MobileNetV2(
|
|
widen_factor=1.0,
|
|
norm_cfg=dict(type='GN', num_groups=2, requires_grad=True),
|
|
out_indices=range(0, 7))
|
|
for m in model.modules():
|
|
if is_norm(m):
|
|
assert isinstance(m, GroupNorm)
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
feat = model(imgs)
|
|
assert len(feat) == 7
|
|
assert feat[0].shape == torch.Size((1, 16, 112, 112))
|
|
assert feat[1].shape == torch.Size((1, 24, 56, 56))
|
|
assert feat[2].shape == torch.Size((1, 32, 28, 28))
|
|
assert feat[3].shape == torch.Size((1, 64, 14, 14))
|
|
assert feat[4].shape == torch.Size((1, 96, 14, 14))
|
|
assert feat[5].shape == torch.Size((1, 160, 7, 7))
|
|
assert feat[6].shape == torch.Size((1, 320, 7, 7))
|
|
|
|
# Test MobileNetV2 with layers 1, 3, 5 out forward
|
|
model = MobileNetV2(widen_factor=1.0, out_indices=(0, 2, 4))
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
feat = model(imgs)
|
|
assert len(feat) == 3
|
|
assert feat[0].shape == torch.Size((1, 16, 112, 112))
|
|
assert feat[1].shape == torch.Size((1, 32, 28, 28))
|
|
assert feat[2].shape == torch.Size((1, 96, 14, 14))
|
|
|
|
# Test MobileNetV2 with checkpoint forward
|
|
model = MobileNetV2(
|
|
widen_factor=1.0, with_cp=True, out_indices=range(0, 7))
|
|
for m in model.modules():
|
|
if is_block(m):
|
|
assert m.with_cp
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
feat = model(imgs)
|
|
assert len(feat) == 7
|
|
assert feat[0].shape == torch.Size((1, 16, 112, 112))
|
|
assert feat[1].shape == torch.Size((1, 24, 56, 56))
|
|
assert feat[2].shape == torch.Size((1, 32, 28, 28))
|
|
assert feat[3].shape == torch.Size((1, 64, 14, 14))
|
|
assert feat[4].shape == torch.Size((1, 96, 14, 14))
|
|
assert feat[5].shape == torch.Size((1, 160, 7, 7))
|
|
assert feat[6].shape == torch.Size((1, 320, 7, 7))
|