mmpretrain/tests/test_models/test_backbones/test_mobilenet_v3.py

176 lines
6.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from torch.nn.modules import GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm
from mmcls.models.backbones import MobileNetV3
from mmcls.models.utils import InvertedResidual
def is_norm(modules):
"""Check if is one of the norms."""
if isinstance(modules, (GroupNorm, _BatchNorm)):
return True
return False
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_mobilenetv3_backbone():
with pytest.raises(TypeError):
# pretrained must be a string path
model = MobileNetV3()
model.init_weights(pretrained=0)
with pytest.raises(AssertionError):
# arch must in [small, large]
MobileNetV3(arch='others')
with pytest.raises(ValueError):
# frozen_stages must less than 13 when arch is small
MobileNetV3(arch='small', frozen_stages=13)
with pytest.raises(ValueError):
# frozen_stages must less than 17 when arch is large
MobileNetV3(arch='large', frozen_stages=17)
with pytest.raises(ValueError):
# max out_indices must less than 13 when arch is small
MobileNetV3(arch='small', out_indices=(13, ))
with pytest.raises(ValueError):
# max out_indices must less than 17 when arch is large
MobileNetV3(arch='large', out_indices=(17, ))
# Test MobileNetV3
model = MobileNetV3()
model.init_weights()
model.train()
# Test MobileNetV3 with first stage frozen
frozen_stages = 1
model = MobileNetV3(frozen_stages=frozen_stages)
model.init_weights()
model.train()
for i in range(0, frozen_stages + 1):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# Test MobileNetV3 with norm eval
model = MobileNetV3(norm_eval=True, out_indices=range(0, 12))
model.init_weights()
model.train()
assert check_norm_state(model.modules(), False)
# Test MobileNetV3 forward with small arch
model = MobileNetV3(out_indices=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 13
assert feat[0].shape == torch.Size([1, 16, 112, 112])
assert feat[1].shape == torch.Size([1, 16, 56, 56])
assert feat[2].shape == torch.Size([1, 24, 28, 28])
assert feat[3].shape == torch.Size([1, 24, 28, 28])
assert feat[4].shape == torch.Size([1, 40, 14, 14])
assert feat[5].shape == torch.Size([1, 40, 14, 14])
assert feat[6].shape == torch.Size([1, 40, 14, 14])
assert feat[7].shape == torch.Size([1, 48, 14, 14])
assert feat[8].shape == torch.Size([1, 48, 14, 14])
assert feat[9].shape == torch.Size([1, 96, 7, 7])
assert feat[10].shape == torch.Size([1, 96, 7, 7])
assert feat[11].shape == torch.Size([1, 96, 7, 7])
assert feat[12].shape == torch.Size([1, 576, 7, 7])
# Test MobileNetV3 forward with small arch and GroupNorm
model = MobileNetV3(
out_indices=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12),
norm_cfg=dict(type='GN', num_groups=2, requires_grad=True))
for m in model.modules():
if is_norm(m):
assert isinstance(m, GroupNorm)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 13
assert feat[0].shape == torch.Size([1, 16, 112, 112])
assert feat[1].shape == torch.Size([1, 16, 56, 56])
assert feat[2].shape == torch.Size([1, 24, 28, 28])
assert feat[3].shape == torch.Size([1, 24, 28, 28])
assert feat[4].shape == torch.Size([1, 40, 14, 14])
assert feat[5].shape == torch.Size([1, 40, 14, 14])
assert feat[6].shape == torch.Size([1, 40, 14, 14])
assert feat[7].shape == torch.Size([1, 48, 14, 14])
assert feat[8].shape == torch.Size([1, 48, 14, 14])
assert feat[9].shape == torch.Size([1, 96, 7, 7])
assert feat[10].shape == torch.Size([1, 96, 7, 7])
assert feat[11].shape == torch.Size([1, 96, 7, 7])
assert feat[12].shape == torch.Size([1, 576, 7, 7])
# Test MobileNetV3 forward with large arch
model = MobileNetV3(
arch='large',
out_indices=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 17
assert feat[0].shape == torch.Size([1, 16, 112, 112])
assert feat[1].shape == torch.Size([1, 16, 112, 112])
assert feat[2].shape == torch.Size([1, 24, 56, 56])
assert feat[3].shape == torch.Size([1, 24, 56, 56])
assert feat[4].shape == torch.Size([1, 40, 28, 28])
assert feat[5].shape == torch.Size([1, 40, 28, 28])
assert feat[6].shape == torch.Size([1, 40, 28, 28])
assert feat[7].shape == torch.Size([1, 80, 14, 14])
assert feat[8].shape == torch.Size([1, 80, 14, 14])
assert feat[9].shape == torch.Size([1, 80, 14, 14])
assert feat[10].shape == torch.Size([1, 80, 14, 14])
assert feat[11].shape == torch.Size([1, 112, 14, 14])
assert feat[12].shape == torch.Size([1, 112, 14, 14])
assert feat[13].shape == torch.Size([1, 160, 7, 7])
assert feat[14].shape == torch.Size([1, 160, 7, 7])
assert feat[15].shape == torch.Size([1, 160, 7, 7])
assert feat[16].shape == torch.Size([1, 960, 7, 7])
# Test MobileNetV3 forward with large arch
model = MobileNetV3(arch='large', out_indices=(0, ))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 1
assert feat[0].shape == torch.Size([1, 16, 112, 112])
# Test MobileNetV3 with checkpoint forward
model = MobileNetV3(with_cp=True)
for m in model.modules():
if isinstance(m, InvertedResidual):
assert m.with_cp
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 1
assert feat[0].shape == torch.Size([1, 576, 7, 7])