mmpretrain/tests/test_models/test_backbones/test_mvit.py

131 lines
4.4 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import math
from copy import deepcopy
from unittest import TestCase
import torch
from mmcls.models import MViT
class TestMViT(TestCase):
def setUp(self):
self.cfg = dict(arch='tiny', drop_path_rate=0.1)
def test_structure(self):
# Test invalid default arch
with self.assertRaisesRegex(AssertionError, 'not in default archs'):
cfg = deepcopy(self.cfg)
cfg['arch'] = 'unknown'
MViT(**cfg)
# Test invalid custom arch
with self.assertRaisesRegex(AssertionError, 'Custom arch needs'):
cfg = deepcopy(self.cfg)
cfg['arch'] = {
'num_layers': 24,
'num_heads': 16,
'feedforward_channels': 4096
}
MViT(**cfg)
# Test custom arch
cfg = deepcopy(self.cfg)
cfg['arch'] = {
'embed_dims': 96,
'num_layers': 10,
'num_heads': 1,
'downscale_indices': [2, 5, 8]
}
stage_indices = [0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]
model = MViT(**cfg)
self.assertEqual(model.embed_dims, 96)
self.assertEqual(model.num_layers, 10)
for i, block in enumerate(model.blocks):
stage = stage_indices[i]
self.assertEqual(block.out_dims, 96 * 2**(stage))
# Test out_indices
cfg = deepcopy(self.cfg)
cfg['out_scales'] = {1: 1}
with self.assertRaisesRegex(AssertionError, "get <class 'dict'>"):
MViT(**cfg)
cfg['out_scales'] = [0, 13]
with self.assertRaisesRegex(AssertionError, 'Invalid out_scales 13'):
MViT(**cfg)
# Test model structure
cfg = deepcopy(self.cfg)
model = MViT(**cfg)
stage_indices = [0, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3]
self.assertEqual(len(model.blocks), 10)
dpr_inc = 0.1 / (10 - 1)
dpr = 0
for i, block in enumerate(model.blocks):
stage = stage_indices[i]
print(i, stage)
self.assertEqual(block.attn.num_heads, 2**stage)
if dpr > 0:
self.assertAlmostEqual(block.drop_path.drop_prob, dpr)
dpr += dpr_inc
def test_init_weights(self):
# test weight init cfg
cfg = deepcopy(self.cfg)
cfg['init_cfg'] = [
dict(
type='Kaiming',
layer='Conv2d',
mode='fan_in',
nonlinearity='linear')
]
cfg['use_abs_pos_embed'] = True
model = MViT(**cfg)
ori_weight = model.patch_embed.projection.weight.clone().detach()
# The pos_embed is all zero before initialize
self.assertTrue(torch.allclose(model.pos_embed, torch.tensor(0.)))
model.init_weights()
initialized_weight = model.patch_embed.projection.weight
self.assertFalse(torch.allclose(ori_weight, initialized_weight))
self.assertFalse(torch.allclose(model.pos_embed, torch.tensor(0.)))
def test_forward(self):
imgs = torch.randn(1, 3, 224, 224)
cfg = deepcopy(self.cfg)
model = MViT(**cfg)
outs = model(imgs)
self.assertIsInstance(outs, tuple)
self.assertEqual(len(outs), 1)
patch_token = outs[-1]
self.assertEqual(patch_token.shape, (1, 768, 7, 7))
# Test forward with multi out scales
cfg = deepcopy(self.cfg)
cfg['out_scales'] = (0, 1, 2, 3)
model = MViT(**cfg)
outs = model(imgs)
self.assertIsInstance(outs, tuple)
self.assertEqual(len(outs), 4)
for stage, out in enumerate(outs):
stride = 2**stage
self.assertEqual(out.shape,
(1, 96 * stride, 56 // stride, 56 // stride))
# Test forward with dynamic input size
imgs1 = torch.randn(1, 3, 224, 224)
imgs2 = torch.randn(1, 3, 256, 256)
imgs3 = torch.randn(1, 3, 256, 309)
cfg = deepcopy(self.cfg)
model = MViT(**cfg)
for imgs in [imgs1, imgs2, imgs3]:
outs = model(imgs)
self.assertIsInstance(outs, tuple)
self.assertEqual(len(outs), 1)
patch_token = outs[-1]
expect_feat_shape = (math.ceil(imgs.shape[2] / 32),
math.ceil(imgs.shape[3] / 32))
self.assertEqual(patch_token.shape, (1, 768, *expect_feat_shape))