mmpretrain/tests/test_models/test_backbones/test_tinyvit.py

81 lines
2.2 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmcls.models.backbones import TinyViT
def test_assertion():
with pytest.raises(AssertionError):
TinyViT(arch='unknown')
with pytest.raises(AssertionError):
# MobileViT out_indices should be valid depth.
TinyViT(out_indices=-100)
def test_tinyvit():
# Test forward
model = TinyViT(arch='5m')
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 1
assert feat[0].shape == torch.Size([1, 320])
# Test forward with multiple outputs
model = TinyViT(arch='5m', out_indices=(0, 1, 2, 3))
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 128])
assert feat[1].shape == torch.Size([1, 160])
assert feat[2].shape == torch.Size([1, 320])
assert feat[3].shape == torch.Size([1, 320])
# Test with custom arch
model = TinyViT(
arch={
'depths': [2, 3, 4, 5],
'channels': [64, 128, 256, 448],
'num_heads': [4, 4, 4, 4]
},
out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 128])
assert feat[1].shape == torch.Size([1, 256])
assert feat[2].shape == torch.Size([1, 448])
assert feat[3].shape == torch.Size([1, 448])
# Test without gap before final norm
model = TinyViT(
arch='21m', out_indices=(0, 1, 2, 3), gap_before_final_norm=False)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 192, 28, 28])
assert feat[1].shape == torch.Size([1, 384, 14, 14])
assert feat[2].shape == torch.Size([1, 576, 7, 7])
assert feat[3].shape == torch.Size([1, 576, 7, 7])
# Test frozen_stages
model = TinyViT(arch='11m', out_indices=(0, 1, 2, 3), frozen_stages=2)
model.init_weights()
model.train()
for i in range(2):
assert not model.stages[i].training
for i in range(2, 4):
assert model.stages[i].training