5.8 KiB
5.8 KiB
t-Distributed Stochastic Neighbor Embedding (t-SNE) Visualization
Introduction of the t-SNE visualization tool
MMPretrain provides tools/visualization/vis_tsne.py
tool to visualize the feature embeddings of images by t-SNE. Please install sklearn
to calculate t-SNE by pip install scikit-learn
.
Command:
python tools/visualization/vis_tsne.py \
CONFIG \
[--checkpoint CHECKPOINT] \
[--work-dir WORK_DIR] \
[--test-cfg TEST_CFG] \
[--vis-stage {backbone,neck,pre_logits}]
[--class-idx ${CLASS_IDX} [CLASS_IDX ...]]
[--max-num-class MAX_NUM_CLASS]
[--max-num-samples MAX_NUM_SAMPLES]
[--cfg-options CFG_OPTIONS [CFG_OPTIONS ...]]
[--device DEVICE]
[--legend]
[--show]
[--n-components N_COMPONENTS]
[--perplexity PERPLEXITY]
[--early-exaggeration EARLY_EXAGGERATION]
[--learning-rate LEARNING_RATE]
[--n-iter N_ITER]
[--n-iter-without-progress N_ITER_WITHOUT_PROGRESS]
[--init INIT]
Description of all arguments:
CONFIG
: The path of t-SNE config file.--checkpoint CHECKPOINT
: The path of the checkpoint file.--work-dir WORK_DIR
: The directory to save logs and visualization images.--test-cfg TEST_CFG
: The path of t-SNE config file to load config of test dataloader.--vis-stage {backbone,neck,pre_logits}
: The visualization stage of the model.--class-idx CLASS_IDX [CLASS_IDX ...]
: The categories used to calculate t-SNE.--max-num-class MAX_NUM_CLASS
: The first N categories to apply t-SNE algorithms. Defaults to 20.--max-num-samples MAX_NUM_SAMPLES
: The maximum number of samples per category. Higher number need longer time to calculate. Defaults to 100.--cfg-options CFG_OPTIONS [CFG_OPTIONS ...]
: override some settings in the used config, the key-value pair in xxx=yyy format will be merged into config file. If the value to be overwritten is a list, it should be like key="[a,b]" or key=a,b It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" Note that the quotation marks are necessary and that no white space is allowed.--device DEVICE
: Device used for inference.--legend
: Show the legend of all categories.--show
: Display the result in a graphical window.--n-components N_COMPONENTS
: The dimension of results.--perplexity PERPLEXITY
: The perplexity is related to the number of nearest neighbors that is used in other manifold learning algorithms.--early-exaggeration EARLY_EXAGGERATION
: Controls how tight natural clusters in the original space are in the embedded space and how much space will be between them.--learning-rate LEARNING_RATE
: The learning rate for t-SNE is usually in the range[10.0, 1000.0]. If the learning rate is too high, the data may looklike a ball with any point approximately equidistant from its nearestneighbours. If the learning rate is too low, most points may lookcompressed in a dense cloud with few outliers.--n-iter N_ITER
: Maximum number of iterations for the optimization. Should be at least 250.--n-iter-without-progress N_ITER_WITHOUT_PROGRESS
: Maximum number of iterations without progress before we abort the optimization.--init INIT
: The init method.
How to visualize the t-SNE of a image classifier (such as ResNet)
Here are two examples of running t-SNE visualization on ResNet-18 and ResNet-50 models, trained on CIFAR-10 dataset:
python tools/visualization/vis_tsne.py \
configs/resnet/resnet18_8xb16_cifar10.py \
--checkpoint https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_b16x8_cifar10_20210528-bd6371c8.pth
python tools/visualization/vis_tsne.py \
configs/resnet/resnet50_8xb16_cifar10.py \
--checkpoint https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar10_20210528-f54bfad9.pth
ResNet-18 | ResNet-50 |
---|---|
![]() |
![]() |
How to visualize the t-SNE of a self-supervised model (such as MAE)
Here is an example of running t-SNE visualization on MAE-ViT-base model, trained on ImageNet dataset. The input data is from ImageNet validation set. MAE and some self-supervised pre-training algorithms do not have test_dataloader information. When analyzing such self-supervised algorithms, you need to add test_dataloader information in the config, or you can use '--test-cfg' argument to specify a config file.
python tools/visualization/vis_tsne.py \
configs/mae/mae_vit-base-p16_8xb512-amp-coslr-800e_in1k.py \
--checkpoint https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-base-p16_8xb512-coslr-800e-fp16_in1k_20220825-5d81fbc4.pth \
--test-cfg configs/_base_/datasets/imagenet_bs32.py
MAE-ViT-base |
---|