mmpretrain/configs/_base_/datasets/imagenet_bs256_beitv2.py

52 lines
1.4 KiB
Python

# dataset settings
dataset_type = 'ImageNet'
data_root = 'data/imagenet/'
data_preprocessor = dict(
type='TwoNormDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
second_mean=[127.5, 127.5, 127.5],
second_std=[127.5, 127.5, 127.5],
bgr_to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='ColorJitter',
brightness=0.4,
contrast=0.4,
saturation=0.4,
hue=0.),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(
type='RandomResizedCropAndInterpolationWithTwoPic',
size=224,
second_size=224,
interpolation='bicubic',
second_interpolation='bicubic',
scale=(0.2, 1.0)),
dict(
type='BEiTMaskGenerator',
input_size=(14, 14),
num_masking_patches=75,
max_num_patches=75,
min_num_patches=16),
dict(
type='PackSelfSupInputs',
algorithm_keys=['mask'],
meta_keys=['img_path'])
]
train_dataloader = dict(
batch_size=256,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='meta/train.txt',
data_prefix=dict(img_path='train/'),
pipeline=train_pipeline))