mirror of
https://github.com/open-mmlab/mmpretrain.git
synced 2025-06-03 14:59:18 +08:00
* update base datasets * update base * update barlowtwins * update with new convention * update * update * update * add schedule * add densecl * add eva * add mae * add maskfeat * add milan and mixmim * add moco * add swav simclr * add simmim and simsiam * refine * update * add to model index * update config inheritance * fix error in metafile * Update pre-commit and metafile check script * update metafile * fix name error * Fix classification model name and config name --------- Co-authored-by: mzr1996 <mzr1996@163.com>
39 lines
1.4 KiB
YAML
39 lines
1.4 KiB
YAML
Collections:
|
|
- Name: DenseCL
|
|
Metadata:
|
|
Training Data: ImageNet-1k
|
|
Training Techniques:
|
|
- SGD with Momentum
|
|
- Weight Decay
|
|
Training Resources: 8x V100 GPUs
|
|
Architecture:
|
|
- ResNet
|
|
Paper:
|
|
URL: https://arxiv.org/abs/2011.09157
|
|
Title: "Dense contrastive learning for self-supervised visual pre-training"
|
|
README: configs/densecl/README.md
|
|
|
|
Models:
|
|
- Name: densecl_resnet50_8xb32-coslr-200e_in1k
|
|
In Collection: DenseCL
|
|
Metadata:
|
|
Epochs: 200
|
|
Batch Size: 256
|
|
Results: null
|
|
Config: configs/densecl/densecl_resnet50_8xb32-coslr-200e_in1k.py
|
|
Weights: https://download.openmmlab.com/mmselfsup/1.x/densecl/densecl_resnet50_8xb32-coslr-200e_in1k/densecl_resnet50_8xb32-coslr-200e_in1k_20220825-3078723b.pth
|
|
Downstream:
|
|
- resnet50_densecl-pre_8xb32-linear-steplr-100e_in1k
|
|
- Name: resnet50_densecl-pre_8xb32-linear-steplr-100e_in1k
|
|
In Collection: DenseCL
|
|
Metadata:
|
|
Epochs: 100
|
|
Batch Size: 256
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 63.5
|
|
Config: configs/densecl/benchmarks/resnet50_8xb32-linear-steplr-100e_in1k.py
|
|
Weights: https://download.openmmlab.com/mmselfsup/1.x/densecl/densecl_resnet50_8xb32-coslr-200e_in1k/resnet50_linear-8xb32-steplr-100e_in1k/resnet50_linear-8xb32-steplr-100e_in1k_20220825-f0f0a579.pth
|