mmpretrain/configs/mixmim/metafile.yml
Yixiao Fang 89000c10eb
[Refactor] Refactor configs and metafile (#1369)
* update base datasets

* update base

* update barlowtwins

* update with new convention

* update

* update

* update

* add schedule

* add densecl

* add eva

* add mae

* add maskfeat

* add milan and mixmim

* add moco

* add swav simclr

* add simmim and simsiam

* refine

* update

* add to model index

* update config inheritance

* fix error in metafile

* Update pre-commit and metafile check script

* update metafile

* fix name error

* Fix classification model name and config name

---------

Co-authored-by: mzr1996 <mzr1996@163.com>
2023-02-23 11:17:16 +08:00

63 lines
2.2 KiB
YAML

Collections:
- Name: MixMIM
Metadata:
Architecture:
- Attention Dropout
- Convolution
- Dense Connections
- Dropout
- GELU
- Layer Normalization
- Multi-Head Attention
- Scaled Dot-Product Attention
- Tanh Activation
Paper:
Title: 'MixMIM: Mixed and Masked Image Modeling for Efficient Visual Representation Learning'
URL: https://arxiv.org/abs/2205.13137
README: configs/mixmim/README.md
Code:
URL: https://github.com/open-mmlab/mmclassification/blob/dev-1.x/mmcls/models/backbones/mixmim.py
Version: v1.0.0rc4
Models:
- Name: mixmim-base_3rdparty_in1k
Metadata:
FLOPs: 16352000000
Parameters: 88344000
Training Data:
- ImageNet-1k
In Collection: MixMIM
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 84.6
Top 5 Accuracy: 97.0
Weights: https://download.openmmlab.com/mmclassification/v0/mixmim/mixmim-base_3rdparty_in1k_20221206-e40e2c8c.pth
Config: configs/mixmim/benchmarks/mixmim-base_8xb64_in1k.py
Converted From:
Code: https://github.com/Sense-X/MixMIM
- Name: mixmim_mixmim-base_16xb128-coslr-300e_in1k
In Collection: MixMIM
Metadata:
Epochs: 300
Batch Size: 2048
Results: null
Config: configs/mixmim/mixmim_mixmim-base_16xb128-coslr-300e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mixmim/mixmim-base-p16_16xb128-coslr-300e_in1k/mixmim-base-p16_16xb128-coslr-300e_in1k_20221208-44fe8d2c.pth
Downstream:
- mixmim-base_mixmim-pre_8xb128-coslr-100e_in1k
- Name: mixmim-base_mixmim-pre_8xb128-coslr-100e_in1k
In Collection: MILAN
Metadata:
Epochs: 100
Batch Size: 1024
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 84.63
Config: configs/mixmim/benchmarks/mixmim-base_8xb128-coslr-100e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mixmim/mixmim-base-p16_16xb128-coslr-300e_in1k/mixmim-base-p16_ft-8xb128-coslr-100e_in1k/mixmim-base-p16_ft-8xb128-coslr-100e_in1k_20221208-41ecada9.pth