mmpretrain/tools/analysis_tools/analyze_logs.py

216 lines
7.2 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import re
import matplotlib.pyplot as plt
import numpy as np
from mmcls.utils import load_json_log
TEST_METRICS = ('precision', 'recall', 'f1_score', 'support', 'mAP', 'CP',
'CR', 'CF1', 'OP', 'OR', 'OF1', 'accuracy')
def cal_train_time(log_dicts, args):
"""Compute the average time per training iteration."""
for i, log_dict in enumerate(log_dicts):
print(f'{"-" * 5}Analyze train time of {args.json_logs[i]}{"-" * 5}')
all_times = []
for epoch in log_dict.keys():
if args.include_outliers:
all_times.append(log_dict[epoch]['time'])
else:
all_times.append(log_dict[epoch]['time'][1:])
all_times = np.array(all_times)
epoch_ave_time = all_times.mean(-1)
slowest_epoch = epoch_ave_time.argmax()
fastest_epoch = epoch_ave_time.argmin()
std_over_epoch = epoch_ave_time.std()
print(f'slowest epoch {slowest_epoch + 1}, '
f'average time is {epoch_ave_time[slowest_epoch]:.4f}')
print(f'fastest epoch {fastest_epoch + 1}, '
f'average time is {epoch_ave_time[fastest_epoch]:.4f}')
print(f'time std over epochs is {std_over_epoch:.4f}')
print(f'average iter time: {np.mean(all_times):.4f} s/iter')
print()
def get_legends(args):
"""if legend is None, use {filename}_{key} as legend."""
legend = args.legend
if legend is None:
legend = []
for json_log in args.json_logs:
for metric in args.keys:
# remove '.json' in the end of log names
basename = os.path.basename(json_log)[:-5]
if basename.endswith('.log'):
basename = basename[:-4]
legend.append(f'{basename}_{metric}')
assert len(legend) == (len(args.json_logs) * len(args.keys))
return legend
def plot_phase_train(metric, log_dict, epochs, curve_label, json_log):
"""plot phase of train cruve."""
if metric not in log_dict[epochs[0]]:
raise KeyError(f'{json_log} does not contain metric {metric}'
f' in train mode')
xs, ys = [], []
for epoch in epochs:
iters = log_dict[epoch]['iter']
if log_dict[epoch]['mode'][-1] == 'val':
iters = iters[:-1]
num_iters_per_epoch = iters[-1]
assert len(iters) > 0, (
'The training log is empty, please try to reduce the '
'interval of log in config file.')
xs.append(np.array(iters) / num_iters_per_epoch + (epoch - 1))
ys.append(np.array(log_dict[epoch][metric][:len(iters)]))
xs = np.concatenate(xs)
ys = np.concatenate(ys)
plt.xlabel('Epochs')
plt.plot(xs, ys, label=curve_label, linewidth=0.75)
def plot_phase_val(metric, log_dict, epochs, curve_label, json_log):
"""plot phase of val cruves."""
# some epoch may not have evaluation. as [(train, 5),(val, 1)]
xs = [e for e in epochs if metric in log_dict[e]]
ys = [log_dict[e][metric] for e in xs if metric in log_dict[e]]
assert len(xs) > 0, (f'{json_log} does not contain metric {metric}')
plt.xlabel('Epochs')
plt.plot(xs, ys, label=curve_label, linewidth=0.75)
def plot_curve_helper(log_dicts, metrics, args, legend):
"""plot curves from log_dicts by metrics."""
num_metrics = len(metrics)
for i, log_dict in enumerate(log_dicts):
epochs = list(log_dict.keys())
for j, metric in enumerate(metrics):
json_log = args.json_logs[i]
print(f'plot curve of {json_log}, metric is {metric}')
curve_label = legend[i * num_metrics + j]
if any(m in metric for m in TEST_METRICS):
plot_phase_val(metric, log_dict, epochs, curve_label, json_log)
else:
plot_phase_train(metric, log_dict, epochs, curve_label,
json_log)
plt.legend()
def plot_curve(log_dicts, args):
"""Plot train metric-iter graph."""
# set backend and style
if args.backend is not None:
plt.switch_backend(args.backend)
try:
import seaborn as sns
sns.set_style(args.style)
except ImportError:
print("Attention: The plot style won't be applied because 'seaborn' "
'package is not installed, please install it if you want better '
'show style.')
# set plot window size
wind_w, wind_h = args.window_size.split('*')
wind_w, wind_h = int(wind_w), int(wind_h)
plt.figure(figsize=(wind_w, wind_h))
# get legends and metrics
legends = get_legends(args)
metrics = args.keys
# plot curves from log_dicts by metrics
plot_curve_helper(log_dicts, metrics, args, legends)
# set title and show or save
if args.title is not None:
plt.title(args.title)
if args.out is None:
plt.show()
else:
print(f'save curve to: {args.out}')
plt.savefig(args.out)
plt.cla()
def add_plot_parser(subparsers):
parser_plt = subparsers.add_parser(
'plot_curve', help='parser for plotting curves')
parser_plt.add_argument(
'json_logs',
type=str,
nargs='+',
help='path of train log in json format')
parser_plt.add_argument(
'--keys',
type=str,
nargs='+',
default=['loss'],
help='the metric that you want to plot')
parser_plt.add_argument('--title', type=str, help='title of figure')
parser_plt.add_argument(
'--legend',
type=str,
nargs='+',
default=None,
help='legend of each plot')
parser_plt.add_argument(
'--backend', type=str, default=None, help='backend of plt')
parser_plt.add_argument(
'--style', type=str, default='whitegrid', help='style of plt')
parser_plt.add_argument('--out', type=str, default=None)
parser_plt.add_argument(
'--window-size',
default='12*7',
help='size of the window to display images, in format of "$W*$H".')
def add_time_parser(subparsers):
parser_time = subparsers.add_parser(
'cal_train_time',
help='parser for computing the average time per training iteration')
parser_time.add_argument(
'json_logs',
type=str,
nargs='+',
help='path of train log in json format')
parser_time.add_argument(
'--include-outliers',
action='store_true',
help='include the first value of every epoch when computing '
'the average time')
def parse_args():
parser = argparse.ArgumentParser(description='Analyze Json Log')
# currently only support plot curve and calculate average train time
subparsers = parser.add_subparsers(dest='task', help='task parser')
add_plot_parser(subparsers)
add_time_parser(subparsers)
args = parser.parse_args()
if args.window_size != '':
assert re.match(r'\d+\*\d+', args.window_size), \
"'window-size' must be in format 'W*H'."
return args
def main():
args = parse_args()
json_logs = args.json_logs
for json_log in json_logs:
assert json_log.endswith('.json')
log_dicts = [load_json_log(json_log) for json_log in json_logs]
eval(args.task)(log_dicts, args)
if __name__ == '__main__':
main()