4.2 KiB
4.2 KiB
模型复杂度分析
计算 FLOPs 和参数数量(实验性的)
我们根据 MMEngine 提供了一个脚本用于计算给定模型的 FLOPs 和参数量。
python tools/analysis_tools/get_flops.py ${CONFIG_FILE} [--shape ${INPUT_SHAPE}]
所有参数说明:
config
: 配置文件的路径。--shape
: 输入尺寸,支持单值或者双值, 如:--shape 256
、--shape 224 256
。默认为224 224
。
示例:
python tools/analysis_tools/get_flops.py configs/resnet/resnet50_8xb32_in1k.py
你将获得如下结果:
==============================
Input shape: (3, 224, 224)
Flops: 4.109G
Params: 25.557M
Activation: 11.114M
==============================
同时,你会得到每层的详细复杂度信息,如下所示:
+--------------------------+----------------------+-----------+--------------+
| module | #parameters or shape | #flops | #activations |
+--------------------------+----------------------+-----------+--------------+
| model | 25.557M | 4.109G | 11.114M |
| backbone | 23.508M | 4.109G | 11.114M |
| backbone.conv1 | 9.408K | 0.118G | 0.803M |
| backbone.conv1.weight | (64, 3, 7, 7) | | |
| backbone.bn1 | 0.128K | 1.606M | 0 |
| backbone.bn1.weight | (64,) | | |
| backbone.bn1.bias | (64,) | | |
| backbone.layer1 | 0.216M | 0.677G | 4.415M |
| backbone.layer1.0 | 75.008K | 0.235G | 2.007M |
| backbone.layer1.1 | 70.4K | 0.221G | 1.204M |
| backbone.layer1.2 | 70.4K | 0.221G | 1.204M |
| backbone.layer2 | 1.22M | 1.034G | 3.111M |
| backbone.layer2.0 | 0.379M | 0.375G | 1.305M |
| backbone.layer2.1 | 0.28M | 0.22G | 0.602M |
| backbone.layer2.2 | 0.28M | 0.22G | 0.602M |
| backbone.layer2.3 | 0.28M | 0.22G | 0.602M |
| backbone.layer3 | 7.098M | 1.469G | 2.158M |
| backbone.layer3.0 | 1.512M | 0.374G | 0.652M |
| backbone.layer3.1 | 1.117M | 0.219G | 0.301M |
| backbone.layer3.2 | 1.117M | 0.219G | 0.301M |
| backbone.layer3.3 | 1.117M | 0.219G | 0.301M |
| backbone.layer3.4 | 1.117M | 0.219G | 0.301M |
| backbone.layer3.5 | 1.117M | 0.219G | 0.301M |
| backbone.layer4 | 14.965M | 0.81G | 0.627M |
| backbone.layer4.0 | 6.04M | 0.373G | 0.326M |
| backbone.layer4.1 | 4.463M | 0.219G | 0.151M |
| backbone.layer4.2 | 4.463M | 0.219G | 0.151M |
| head.fc | 2.049M | | |
| head.fc.weight | (1000, 2048) | | |
| head.fc.bias | (1000,) | | |
| neck.gap | | 0.1M | 0 |
+--------------------------+----------------------+-----------+--------------+
警告
此工具仍处于试验阶段,我们不保证该数字正确无误。您最好将结果用于简单比较,但在技术报告或论文中采用该结果之前,请仔细检查。
- FLOPs 与输入的尺寸有关,而参数量与输入尺寸无关。默认输入尺寸为 (1, 3, 224, 224)
- 一些运算不会被计入 FLOPs 的统计中,例如某些自定义运算。详细信息请参考 [`mmengine.analysis.complexity_analysis._DEFAULT_SUPPORTED_FLOP_OPS`](https://github.com/open-mmlab/mmengine/blob/main/mmengine/analysis/complexity_analysis.py)。