mmpretrain/.dev_scripts/benchmark_regression/1-benchmark_valid.py

256 lines
9.3 KiB
Python

import logging
import re
from argparse import ArgumentParser
from pathlib import Path
from time import time
from typing import OrderedDict
import numpy as np
import torch
from mmcv import Config
from mmcv.parallel import collate, scatter
from modelindex.load_model_index import load
from rich.console import Console
from rich.table import Table
from mmcls.apis import init_model
from mmcls.core.visualization.image import imshow_infos
from mmcls.datasets.imagenet import ImageNet
from mmcls.datasets.pipelines import Compose
from mmcls.utils import get_root_logger
console = Console()
MMCLS_ROOT = Path(__file__).absolute().parents[2]
CIFAR10_CLASSES = [
'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse',
'ship', 'truck'
]
CIFAR100_CLASSES = [
'apple', 'aquarium_fish', 'baby', 'bear', 'beaver', 'bed', 'bee', 'beetle',
'bicycle', 'bottle', 'bowl', 'boy', 'bridge', 'bus', 'butterfly', 'camel',
'can', 'castle', 'caterpillar', 'cattle', 'chair', 'chimpanzee', 'clock',
'cloud', 'cockroach', 'couch', 'crab', 'crocodile', 'cup', 'dinosaur',
'dolphin', 'elephant', 'flatfish', 'forest', 'fox', 'girl', 'hamster',
'house', 'kangaroo', 'keyboard', 'lamp', 'lawn_mower', 'leopard', 'lion',
'lizard', 'lobster', 'man', 'maple_tree', 'motorcycle', 'mountain',
'mouse', 'mushroom', 'oak_tree', 'orange', 'orchid', 'otter', 'palm_tree',
'pear', 'pickup_truck', 'pine_tree', 'plain', 'plate', 'poppy',
'porcupine', 'possum', 'rabbit', 'raccoon', 'ray', 'road', 'rocket',
'rose', 'sea', 'seal', 'shark', 'shrew', 'skunk', 'skyscraper', 'snail',
'snake', 'spider', 'squirrel', 'streetcar', 'sunflower', 'sweet_pepper',
'table', 'tank', 'telephone', 'television', 'tiger', 'tractor', 'train',
'trout', 'tulip', 'turtle', 'wardrobe', 'whale', 'willow_tree', 'wolf',
'woman', 'worm'
]
classes_map = {
'ImageNet-1k': ImageNet.CLASSES,
'CIFAR-10': CIFAR10_CLASSES,
'CIFAR-100': CIFAR100_CLASSES
}
def parse_args():
parser = ArgumentParser(description='Valid all models in model-index.yml')
parser.add_argument(
'--checkpoint-root',
help='Checkpoint file root path. If set, load checkpoint before test.')
parser.add_argument('--img', default='demo/demo.JPEG', help='Image file')
parser.add_argument('--models', nargs='+', help='models name to inference')
parser.add_argument('--show', action='store_true', help='show results')
parser.add_argument(
'--wait-time',
type=float,
default=1,
help='the interval of show (s), 0 is block')
parser.add_argument(
'--inference-time',
action='store_true',
help='Test inference time by run 10 times for each model.')
parser.add_argument(
'--flops', action='store_true', help='Get Flops and Params of models')
parser.add_argument(
'--flops-str',
action='store_true',
help='Output FLOPs and params counts in a string form.')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
args = parser.parse_args()
return args
def inference(config_file, checkpoint, classes, args):
cfg = Config.fromfile(config_file)
model = init_model(cfg, checkpoint, device=args.device)
model.CLASSES = classes
# build the data pipeline
if cfg.data.test.pipeline[0]['type'] != 'LoadImageFromFile':
cfg.data.test.pipeline.insert(0, dict(type='LoadImageFromFile'))
if cfg.data.test.type in ['CIFAR10', 'CIFAR100']:
# The image shape of CIFAR is (32, 32, 3)
cfg.data.test.pipeline.insert(1, dict(type='Resize', size=32))
data = dict(img_info=dict(filename=args.img), img_prefix=None)
test_pipeline = Compose(cfg.data.test.pipeline)
data = test_pipeline(data)
resolution = tuple(data['img'].shape[1:])
data = collate([data], samples_per_gpu=1)
if next(model.parameters()).is_cuda:
# scatter to specified GPU
data = scatter(data, [args.device])[0]
# forward the model
result = {'resolution': resolution}
with torch.no_grad():
if args.inference_time:
time_record = []
for _ in range(10):
start = time()
scores = model(return_loss=False, **data)
time_record.append((time() - start) * 1000)
result['time_mean'] = np.mean(time_record[1:-1])
result['time_std'] = np.std(time_record[1:-1])
else:
scores = model(return_loss=False, **data)
pred_score = np.max(scores, axis=1)[0]
pred_label = np.argmax(scores, axis=1)[0]
result['pred_label'] = pred_label
result['pred_score'] = float(pred_score)
result['pred_class'] = model.CLASSES[result['pred_label']]
result['model'] = config_file.stem
if args.flops:
from mmcv.cnn.utils import get_model_complexity_info
with torch.no_grad():
if hasattr(model, 'extract_feat'):
model.forward = model.extract_feat
flops, params = get_model_complexity_info(
model,
input_shape=(3, ) + resolution,
print_per_layer_stat=False,
as_strings=args.flops_str)
result['flops'] = flops if args.flops_str else int(flops)
result['params'] = params if args.flops_str else int(params)
else:
result['flops'] = ''
result['params'] = ''
return result
def show_summary(summary_data, args):
table = Table(title='Validation Benchmark Regression Summary')
table.add_column('Model')
table.add_column('Validation')
table.add_column('Resolution (h, w)')
if args.inference_time:
table.add_column('Inference Time (std) (ms/im)')
if args.flops:
table.add_column('Flops', justify='right')
table.add_column('Params', justify='right')
for model_name, summary in summary_data.items():
row = [model_name]
valid = summary['valid']
color = 'green' if valid == 'PASS' else 'red'
row.append(f'[{color}]{valid}[/{color}]')
if valid == 'PASS':
row.append(str(summary['resolution']))
if args.inference_time:
time_mean = f"{summary['time_mean']:.2f}"
time_std = f"{summary['time_std']:.2f}"
row.append(f'{time_mean}\t({time_std})'.expandtabs(8))
if args.flops:
row.append(str(summary['flops']))
row.append(str(summary['params']))
table.add_row(*row)
console.print(table)
# Sample test whether the inference code is correct
def main(args):
model_index_file = MMCLS_ROOT / 'model-index.yml'
model_index = load(str(model_index_file))
model_index.build_models_with_collections()
models = OrderedDict({model.name: model for model in model_index.models})
logger = get_root_logger(
log_file='benchmark_test_image.log', log_level=logging.INFO)
if args.models:
patterns = [re.compile(pattern) for pattern in args.models]
filter_models = {}
for k, v in models.items():
if any([re.match(pattern, k) for pattern in patterns]):
filter_models[k] = v
if len(filter_models) == 0:
print('No model found, please specify models in:')
print('\n'.join(models.keys()))
return
models = filter_models
summary_data = {}
for model_name, model_info in models.items():
if model_info.config is None:
continue
config = Path(model_info.config)
assert config.exists(), f'{model_name}: {config} not found.'
logger.info(f'Processing: {model_name}')
http_prefix = 'https://download.openmmlab.com/mmclassification/'
dataset = model_info.results[0].dataset
if args.checkpoint_root is not None:
root = args.checkpoint_root
if 's3://' in args.checkpoint_root:
from mmcv.fileio import FileClient
from petrel_client.common.exception import AccessDeniedError
file_client = FileClient.infer_client(uri=root)
checkpoint = file_client.join_path(
root, model_info.weights[len(http_prefix):])
try:
exists = file_client.exists(checkpoint)
except AccessDeniedError:
exists = False
else:
checkpoint = Path(root) / model_info.weights[len(http_prefix):]
exists = checkpoint.exists()
if exists:
checkpoint = str(checkpoint)
else:
print(f'WARNING: {model_name}: {checkpoint} not found.')
checkpoint = None
else:
checkpoint = None
try:
# build the model from a config file and a checkpoint file
result = inference(MMCLS_ROOT / config, checkpoint,
classes_map[dataset], args)
result['valid'] = 'PASS'
except Exception as e:
logger.error(f'"{config}" : {repr(e)}')
result = {'valid': 'FAIL'}
summary_data[model_name] = result
# show the results
if args.show:
imshow_infos(args.img, result, wait_time=args.wait_time)
show_summary(summary_data, args)
if __name__ == '__main__':
args = parse_args()
main(args)