86 lines
2.5 KiB
YAML
86 lines
2.5 KiB
YAML
Models:
|
|
- Name: resnet34
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 73.85
|
|
Top 5 Accuracy: 91.53
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_batch256_imagenet_20200708-32ffb4f7.pth
|
|
Config: configs/resnet/resnet34_8xb32_in1k.py
|
|
Gpus: 8
|
|
|
|
- Name: vgg11bn
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 70.75
|
|
Top 5 Accuracy: 90.12
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_bn_batch256_imagenet_20210207-f244902c.pth
|
|
Config: configs/vgg/vgg11bn_8xb32_in1k.py
|
|
Gpus: 8
|
|
|
|
- Name: seresnet50
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 77.74
|
|
Top 5 Accuracy: 93.84
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet50_batch256_imagenet_20200804-ae206104.pth
|
|
Config: configs/seresnet/seresnet50_8xb32_in1k.py
|
|
Gpus: 8
|
|
|
|
- Name: resnext50
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 77.92
|
|
Top 5 Accuracy: 93.74
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext50_32x4d_batch256_imagenet_20200708-c07adbb7.pth
|
|
Config: configs/resnext/resnext50-32x4d_8xb32_in1k.py
|
|
Gpus: 8
|
|
|
|
- Name: mobilenet
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 71.86
|
|
Top 5 Accuracy: 90.42
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/mobilenet_v2/mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.pth
|
|
Config: configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py
|
|
Gpus: 8
|
|
Months:
|
|
- 1
|
|
- 4
|
|
- 7
|
|
- 10
|
|
|
|
- Name: shufflenet_v1
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 68.13
|
|
Top 5 Accuracy: 87.81
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/shufflenet_v1/shufflenet_v1_batch1024_imagenet_20200804-5d6cec73.pth
|
|
Config: configs/shufflenet_v1/shufflenet-v1-1x_16xb64_in1k.py
|
|
Gpus: 16
|
|
Months:
|
|
- 2
|
|
- 5
|
|
- 8
|
|
- 11
|
|
|
|
- Name: swin_tiny
|
|
Results:
|
|
- Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 81.18
|
|
Top 5 Accuracy: 95.61
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_tiny_224_b16x64_300e_imagenet_20210616_090925-66df6be6.pth
|
|
Config: configs/swin_transformer/swin-tiny_16xb64_in1k.py
|
|
Gpus: 16
|
|
Months:
|
|
- 3
|
|
- 6
|
|
- 9
|
|
- 12
|