mmpretrain/mmcls/models/heads/stacked_head.py

164 lines
5.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, Sequence
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import build_activation_layer, build_norm_layer
from mmcv.runner import BaseModule, ModuleList
from ..builder import HEADS
from .cls_head import ClsHead
class LinearBlock(BaseModule):
def __init__(self,
in_channels,
out_channels,
dropout_rate=0.,
norm_cfg=None,
act_cfg=None,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
self.fc = nn.Linear(in_channels, out_channels)
self.norm = None
self.act = None
self.dropout = None
if norm_cfg is not None:
self.norm = build_norm_layer(norm_cfg, out_channels)[1]
if act_cfg is not None:
self.act = build_activation_layer(act_cfg)
if dropout_rate > 0:
self.dropout = nn.Dropout(p=dropout_rate)
def forward(self, x):
x = self.fc(x)
if self.norm is not None:
x = self.norm(x)
if self.act is not None:
x = self.act(x)
if self.dropout is not None:
x = self.dropout(x)
return x
@HEADS.register_module()
class StackedLinearClsHead(ClsHead):
"""Classifier head with several hidden fc layer and a output fc layer.
Args:
num_classes (int): Number of categories.
in_channels (int): Number of channels in the input feature map.
mid_channels (Sequence): Number of channels in the hidden fc layers.
dropout_rate (float): Dropout rate after each hidden fc layer,
except the last layer. Defaults to 0.
norm_cfg (dict, optional): Config dict of normalization layer after
each hidden fc layer, except the last layer. Defaults to None.
act_cfg (dict, optional): Config dict of activation function after each
hidden layer, except the last layer. Defaults to use "ReLU".
"""
def __init__(self,
num_classes: int,
in_channels: int,
mid_channels: Sequence,
dropout_rate: float = 0.,
norm_cfg: Dict = None,
act_cfg: Dict = dict(type='ReLU'),
**kwargs):
super(StackedLinearClsHead, self).__init__(**kwargs)
assert num_classes > 0, \
f'`num_classes` of StackedLinearClsHead must be a positive ' \
f'integer, got {num_classes} instead.'
self.num_classes = num_classes
self.in_channels = in_channels
assert isinstance(mid_channels, Sequence), \
f'`mid_channels` of StackedLinearClsHead should be a sequence, ' \
f'instead of {type(mid_channels)}'
self.mid_channels = mid_channels
self.dropout_rate = dropout_rate
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self._init_layers()
def _init_layers(self):
self.layers = ModuleList()
in_channels = self.in_channels
for hidden_channels in self.mid_channels:
self.layers.append(
LinearBlock(
in_channels,
hidden_channels,
dropout_rate=self.dropout_rate,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
in_channels = hidden_channels
self.layers.append(
LinearBlock(
self.mid_channels[-1],
self.num_classes,
dropout_rate=0.,
norm_cfg=None,
act_cfg=None))
def init_weights(self):
self.layers.init_weights()
def pre_logits(self, x):
if isinstance(x, tuple):
x = x[-1]
for layer in self.layers[:-1]:
x = layer(x)
return x
@property
def fc(self):
return self.layers[-1]
def simple_test(self, x, softmax=True, post_process=True):
"""Inference without augmentation.
Args:
x (tuple[Tensor]): The input features.
Multi-stage inputs are acceptable but only the last stage will
be used to classify. The shape of every item should be
``(num_samples, in_channels)``.
softmax (bool): Whether to softmax the classification score.
post_process (bool): Whether to do post processing the
inference results. It will convert the output to a list.
Returns:
Tensor | list: The inference results.
- If no post processing, the output is a tensor with shape
``(num_samples, num_classes)``.
- If post processing, the output is a multi-dimentional list of
float and the dimensions are ``(num_samples, num_classes)``.
"""
x = self.pre_logits(x)
cls_score = self.fc(x)
if softmax:
pred = (
F.softmax(cls_score, dim=1) if cls_score is not None else None)
else:
pred = cls_score
if post_process:
return self.post_process(pred)
else:
return pred
def forward_train(self, x, gt_label, **kwargs):
x = self.pre_logits(x)
cls_score = self.fc(x)
losses = self.loss(cls_score, gt_label, **kwargs)
return losses