mmpretrain/tests/test_models/test_backbones/test_convnext.py

87 lines
2.6 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmcls.models.backbones import ConvNeXt
def test_assertion():
with pytest.raises(AssertionError):
ConvNeXt(arch='unknown')
with pytest.raises(AssertionError):
# ConvNeXt arch dict should include 'embed_dims',
ConvNeXt(arch=dict(channels=[2, 3, 4, 5]))
with pytest.raises(AssertionError):
# ConvNeXt arch dict should include 'embed_dims',
ConvNeXt(arch=dict(depths=[2, 3, 4], channels=[2, 3, 4, 5]))
def test_convnext():
# Test forward
model = ConvNeXt(arch='tiny', out_indices=-1)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 1
assert feat[0].shape == torch.Size([1, 768])
# Test forward with multiple outputs
model = ConvNeXt(arch='small', out_indices=(0, 1, 2, 3))
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 96])
assert feat[1].shape == torch.Size([1, 192])
assert feat[2].shape == torch.Size([1, 384])
assert feat[3].shape == torch.Size([1, 768])
# Test with custom arch
model = ConvNeXt(
arch={
'depths': [2, 3, 4, 5, 6],
'channels': [16, 32, 64, 128, 256]
},
out_indices=(0, 1, 2, 3, 4))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 5
assert feat[0].shape == torch.Size([1, 16])
assert feat[1].shape == torch.Size([1, 32])
assert feat[2].shape == torch.Size([1, 64])
assert feat[3].shape == torch.Size([1, 128])
assert feat[4].shape == torch.Size([1, 256])
# Test without gap before final norm
model = ConvNeXt(
arch='small', out_indices=(0, 1, 2, 3), gap_before_final_norm=False)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 96, 56, 56])
assert feat[1].shape == torch.Size([1, 192, 28, 28])
assert feat[2].shape == torch.Size([1, 384, 14, 14])
assert feat[3].shape == torch.Size([1, 768, 7, 7])
# Test frozen_stages
model = ConvNeXt(arch='small', out_indices=(0, 1, 2, 3), frozen_stages=2)
model.init_weights()
model.train()
for i in range(2):
assert not model.downsample_layers[i].training
assert not model.stages[i].training
for i in range(2, 4):
assert model.downsample_layers[i].training
assert model.stages[i].training