mmpretrain/tests/test_models/test_backbones/test_hrnet.py

94 lines
2.6 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from torch.nn.modules import GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm
from mmcls.models.backbones import HRNet
def is_norm(modules):
"""Check if is one of the norms."""
if isinstance(modules, (GroupNorm, _BatchNorm)):
return True
return False
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
@pytest.mark.parametrize('base_channels', [18, 30, 32, 40, 44, 48, 64])
def test_hrnet_arch_zoo(base_channels):
cfg_ori = dict(arch=f'w{base_channels}')
# Test HRNet model with input size of 224
model = HRNet(**cfg_ori)
model.init_weights()
model.train()
assert check_norm_state(model.modules(), True)
imgs = torch.randn(3, 3, 224, 224)
outs = model(imgs)
out_channels = base_channels
out_size = 56
assert isinstance(outs, tuple)
for out in outs:
assert out.shape == (3, out_channels, out_size, out_size)
out_channels = out_channels * 2
out_size = out_size // 2
def test_hrnet_custom_arch():
cfg_ori = dict(
extra=dict(
stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4, ),
num_channels=(64, )),
stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(32, 64)),
stage3=dict(
num_modules=4,
num_branches=3,
block='BOTTLENECK',
num_blocks=(4, 4, 2),
num_channels=(32, 64, 128)),
stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 3, 4, 4),
num_channels=(32, 64, 152, 256)),
), )
# Test HRNet model with input size of 224
model = HRNet(**cfg_ori)
model.init_weights()
model.train()
assert check_norm_state(model.modules(), True)
imgs = torch.randn(3, 3, 224, 224)
outs = model(imgs)
out_channels = (32, 64, 152, 256)
out_size = 56
assert isinstance(outs, tuple)
for out, out_channel in zip(outs, out_channels):
assert out.shape == (3, out_channel, out_size, out_size)
out_size = out_size // 2