mmpretrain/tests/test_models/test_backbones/test_tnt.py

51 lines
1.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from torch.nn.modules.batchnorm import _BatchNorm
from mmcls.models.backbones import TNT
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_tnt_backbone():
with pytest.raises(TypeError):
# pretrained must be a string path
model = TNT()
model.init_weights(pretrained=0)
# Test tnt_base_patch16_224
model = TNT()
model.init_weights()
model.train()
assert check_norm_state(model.modules(), True)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 1
assert feat[0].shape == torch.Size((1, 640))
# Test tnt with embed_dims=768
arch = {
'embed_dims_outer': 768,
'embed_dims_inner': 48,
'num_layers': 12,
'num_heads_outer': 6,
'num_heads_inner': 4
}
model = TNT(arch=arch)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 1
assert feat[0].shape == torch.Size((1, 768))