mmpretrain/tests/test_models/test_heads.py

320 lines
11 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from unittest.mock import patch
import pytest
import torch
from mmcls.models.heads import (ClsHead, ConformerHead, DeiTClsHead,
LinearClsHead, MultiLabelClsHead,
MultiLabelLinearClsHead, StackedLinearClsHead,
VisionTransformerClsHead)
@pytest.mark.parametrize('feat', [torch.rand(4, 10), (torch.rand(4, 10), )])
def test_cls_head(feat):
fake_gt_label = torch.randint(0, 10, (4, ))
# test forward_train with cal_acc=True
head = ClsHead(cal_acc=True)
losses = head.forward_train(feat, fake_gt_label)
assert losses['loss'].item() > 0
assert 'accuracy' in losses
# test forward_train with cal_acc=False
head = ClsHead()
losses = head.forward_train(feat, fake_gt_label)
assert losses['loss'].item() > 0
# test forward_train with weight
weight = torch.tensor([0.5, 0.5, 0.5, 0.5])
losses_ = head.forward_train(feat, fake_gt_label)
losses = head.forward_train(feat, fake_gt_label, weight=weight)
assert losses['loss'].item() == losses_['loss'].item() * 0.5
# test simple_test with post_process
pred = head.simple_test(feat)
assert isinstance(pred, list) and len(pred) == 4
with patch('torch.onnx.is_in_onnx_export', return_value=True):
pred = head.simple_test(feat)
assert pred.shape == (4, 10)
# test simple_test without post_process
pred = head.simple_test(feat, post_process=False)
assert isinstance(pred, torch.Tensor) and pred.shape == (4, 10)
logits = head.simple_test(feat, softmax=False, post_process=False)
torch.testing.assert_allclose(pred, torch.softmax(logits, dim=1))
# test pre_logits
features = head.pre_logits(feat)
if isinstance(feat, tuple):
torch.testing.assert_allclose(features, feat[0])
else:
torch.testing.assert_allclose(features, feat)
@pytest.mark.parametrize('feat', [torch.rand(4, 3), (torch.rand(4, 3), )])
def test_linear_head(feat):
fake_gt_label = torch.randint(0, 10, (4, ))
# test LinearClsHead forward
head = LinearClsHead(10, 3)
losses = head.forward_train(feat, fake_gt_label)
assert losses['loss'].item() > 0
# test init weights
head = LinearClsHead(10, 3)
head.init_weights()
assert abs(head.fc.weight).sum() > 0
# test simple_test with post_process
pred = head.simple_test(feat)
assert isinstance(pred, list) and len(pred) == 4
with patch('torch.onnx.is_in_onnx_export', return_value=True):
pred = head.simple_test(feat)
assert pred.shape == (4, 10)
# test simple_test without post_process
pred = head.simple_test(feat, post_process=False)
assert isinstance(pred, torch.Tensor) and pred.shape == (4, 10)
logits = head.simple_test(feat, softmax=False, post_process=False)
torch.testing.assert_allclose(pred, torch.softmax(logits, dim=1))
# test pre_logits
features = head.pre_logits(feat)
if isinstance(feat, tuple):
torch.testing.assert_allclose(features, feat[0])
else:
torch.testing.assert_allclose(features, feat)
@pytest.mark.parametrize('feat', [torch.rand(4, 10), (torch.rand(4, 10), )])
def test_multilabel_head(feat):
head = MultiLabelClsHead()
fake_gt_label = torch.randint(0, 2, (4, 10))
losses = head.forward_train(feat, fake_gt_label)
assert losses['loss'].item() > 0
# test simple_test with post_process
pred = head.simple_test(feat)
assert isinstance(pred, list) and len(pred) == 4
with patch('torch.onnx.is_in_onnx_export', return_value=True):
pred = head.simple_test(feat)
assert pred.shape == (4, 10)
# test simple_test without post_process
pred = head.simple_test(feat, post_process=False)
assert isinstance(pred, torch.Tensor) and pred.shape == (4, 10)
logits = head.simple_test(feat, sigmoid=False, post_process=False)
torch.testing.assert_allclose(pred, torch.sigmoid(logits))
# test pre_logits
features = head.pre_logits(feat)
if isinstance(feat, tuple):
torch.testing.assert_allclose(features, feat[0])
else:
torch.testing.assert_allclose(features, feat)
@pytest.mark.parametrize('feat', [torch.rand(4, 5), (torch.rand(4, 5), )])
def test_multilabel_linear_head(feat):
head = MultiLabelLinearClsHead(10, 5)
fake_gt_label = torch.randint(0, 2, (4, 10))
head.init_weights()
losses = head.forward_train(feat, fake_gt_label)
assert losses['loss'].item() > 0
# test simple_test with post_process
pred = head.simple_test(feat)
assert isinstance(pred, list) and len(pred) == 4
with patch('torch.onnx.is_in_onnx_export', return_value=True):
pred = head.simple_test(feat)
assert pred.shape == (4, 10)
# test simple_test without post_process
pred = head.simple_test(feat, post_process=False)
assert isinstance(pred, torch.Tensor) and pred.shape == (4, 10)
logits = head.simple_test(feat, sigmoid=False, post_process=False)
torch.testing.assert_allclose(pred, torch.sigmoid(logits))
# test pre_logits
features = head.pre_logits(feat)
if isinstance(feat, tuple):
torch.testing.assert_allclose(features, feat[0])
else:
torch.testing.assert_allclose(features, feat)
@pytest.mark.parametrize('feat', [torch.rand(4, 5), (torch.rand(4, 5), )])
def test_stacked_linear_cls_head(feat):
# test assertion
with pytest.raises(AssertionError):
StackedLinearClsHead(num_classes=3, in_channels=5, mid_channels=10)
with pytest.raises(AssertionError):
StackedLinearClsHead(num_classes=-1, in_channels=5, mid_channels=[10])
fake_gt_label = torch.randint(0, 2, (4, )) # B, num_classes
# test forward with default setting
head = StackedLinearClsHead(
num_classes=10, in_channels=5, mid_channels=[20])
head.init_weights()
losses = head.forward_train(feat, fake_gt_label)
assert losses['loss'].item() > 0
# test simple_test with post_process
pred = head.simple_test(feat)
assert isinstance(pred, list) and len(pred) == 4
with patch('torch.onnx.is_in_onnx_export', return_value=True):
pred = head.simple_test(feat)
assert pred.shape == (4, 10)
# test simple_test without post_process
pred = head.simple_test(feat, post_process=False)
assert isinstance(pred, torch.Tensor) and pred.shape == (4, 10)
logits = head.simple_test(feat, softmax=False, post_process=False)
torch.testing.assert_allclose(pred, torch.softmax(logits, dim=1))
# test pre_logits
features = head.pre_logits(feat)
assert features.shape == (4, 20)
# test forward with full function
head = StackedLinearClsHead(
num_classes=3,
in_channels=5,
mid_channels=[8, 10],
dropout_rate=0.2,
norm_cfg=dict(type='BN1d'),
act_cfg=dict(type='HSwish'))
head.init_weights()
losses = head.forward_train(feat, fake_gt_label)
assert losses['loss'].item() > 0
def test_vit_head():
fake_features = ([torch.rand(4, 7, 7, 16), torch.rand(4, 100)], )
fake_gt_label = torch.randint(0, 10, (4, ))
# test vit head forward
head = VisionTransformerClsHead(10, 100)
losses = head.forward_train(fake_features, fake_gt_label)
assert not hasattr(head.layers, 'pre_logits')
assert not hasattr(head.layers, 'act')
assert losses['loss'].item() > 0
# test vit head forward with hidden layer
head = VisionTransformerClsHead(10, 100, hidden_dim=20)
losses = head.forward_train(fake_features, fake_gt_label)
assert hasattr(head.layers, 'pre_logits') and hasattr(head.layers, 'act')
assert losses['loss'].item() > 0
# test vit head init_weights
head = VisionTransformerClsHead(10, 100, hidden_dim=20)
head.init_weights()
assert abs(head.layers.pre_logits.weight).sum() > 0
head = VisionTransformerClsHead(10, 100, hidden_dim=20)
# test simple_test with post_process
pred = head.simple_test(fake_features)
assert isinstance(pred, list) and len(pred) == 4
with patch('torch.onnx.is_in_onnx_export', return_value=True):
pred = head.simple_test(fake_features)
assert pred.shape == (4, 10)
# test simple_test without post_process
pred = head.simple_test(fake_features, post_process=False)
assert isinstance(pred, torch.Tensor) and pred.shape == (4, 10)
logits = head.simple_test(fake_features, softmax=False, post_process=False)
torch.testing.assert_allclose(pred, torch.softmax(logits, dim=1))
# test pre_logits
features = head.pre_logits(fake_features)
assert features.shape == (4, 20)
# test assertion
with pytest.raises(ValueError):
VisionTransformerClsHead(-1, 100)
def test_conformer_head():
fake_features = ([torch.rand(4, 64), torch.rand(4, 96)], )
fake_gt_label = torch.randint(0, 10, (4, ))
# test conformer head forward
head = ConformerHead(num_classes=10, in_channels=[64, 96])
losses = head.forward_train(fake_features, fake_gt_label)
assert losses['loss'].item() > 0
# test simple_test with post_process
pred = head.simple_test(fake_features)
assert isinstance(pred, list) and len(pred) == 4
with patch('torch.onnx.is_in_onnx_export', return_value=True):
pred = head.simple_test(fake_features)
assert pred.shape == (4, 10)
# test simple_test without post_process
pred = head.simple_test(fake_features, post_process=False)
assert isinstance(pred, torch.Tensor) and pred.shape == (4, 10)
logits = head.simple_test(fake_features, softmax=False, post_process=False)
torch.testing.assert_allclose(pred, torch.softmax(sum(logits), dim=1))
# test pre_logits
features = head.pre_logits(fake_features)
assert features is fake_features[0]
def test_deit_head():
fake_features = ([
torch.rand(4, 7, 7, 16),
torch.rand(4, 100),
torch.rand(4, 100)
], )
fake_gt_label = torch.randint(0, 10, (4, ))
# test deit head forward
head = DeiTClsHead(num_classes=10, in_channels=100)
losses = head.forward_train(fake_features, fake_gt_label)
assert not hasattr(head.layers, 'pre_logits')
assert not hasattr(head.layers, 'act')
assert losses['loss'].item() > 0
# test deit head forward with hidden layer
head = DeiTClsHead(num_classes=10, in_channels=100, hidden_dim=20)
losses = head.forward_train(fake_features, fake_gt_label)
assert hasattr(head.layers, 'pre_logits') and hasattr(head.layers, 'act')
assert losses['loss'].item() > 0
# test deit head init_weights
head = DeiTClsHead(10, 100, hidden_dim=20)
head.init_weights()
assert abs(head.layers.pre_logits.weight).sum() > 0
head = DeiTClsHead(10, 100, hidden_dim=20)
# test simple_test with post_process
pred = head.simple_test(fake_features)
assert isinstance(pred, list) and len(pred) == 4
with patch('torch.onnx.is_in_onnx_export', return_value=True):
pred = head.simple_test(fake_features)
assert pred.shape == (4, 10)
# test simple_test without post_process
pred = head.simple_test(fake_features, post_process=False)
assert isinstance(pred, torch.Tensor) and pred.shape == (4, 10)
logits = head.simple_test(fake_features, softmax=False, post_process=False)
torch.testing.assert_allclose(pred, torch.softmax(logits, dim=1))
# test pre_logits
cls_token, dist_token = head.pre_logits(fake_features)
assert cls_token.shape == (4, 20)
assert dist_token.shape == (4, 20)
# test assertion
with pytest.raises(ValueError):
DeiTClsHead(-1, 100)