mmpretrain/.dev_scripts/generate_readme.py

162 lines
5.9 KiB
Python

# flake8: noqa
import argparse
import warnings
from collections import defaultdict
from pathlib import Path
from modelindex.load_model_index import load
from modelindex.models.ModelIndex import ModelIndex
prog_description = """\
Use metafile to generate a README.md.
Notice that the tool may fail in some corner cases, and you still need to check and fill some contents manually in the generated README.
"""
def parse_args():
parser = argparse.ArgumentParser(description=prog_description)
parser.add_argument('metafile', type=Path, help='The path of metafile')
parser.add_argument(
'--table', action='store_true', help='Only generate summary tables')
args = parser.parse_args()
return args
def add_title(metafile: ModelIndex, readme: list):
paper = metafile.collections[0].paper
title = paper['Title']
url = paper['URL']
abbr = metafile.collections[0].name
papertype = metafile.collections[0].data.get('type', 'Algorithm')
readme.append(f'# {abbr}\n')
readme.append(f'> [{title}]({url})')
readme.append(f'<!-- [{papertype.upper()}] -->')
readme.append('')
def add_abstract(metafile, readme):
paper = metafile.collections[0].paper
url = paper['URL']
if 'arxiv' in url:
try:
import arxiv
search = arxiv.Search(id_list=[url.split('/')[-1]])
info = next(search.results())
abstract = info.summary
except ImportError:
warnings.warn('Install arxiv parser by `pip install arxiv` '
'to automatically generate abstract.')
abstract = None
else:
abstract = None
readme.append('## Abstract\n')
if abstract is not None:
readme.append(abstract.replace('\n', ' '))
readme.append('')
readme.append('<div align=center>\n'
'<img src="" width="50%"/>\n'
'</div>')
readme.append('')
def add_models(metafile, readme):
models = metafile.models
if len(models) == 0:
return
readme.append('## Results and models')
readme.append('')
datasets = defaultdict(list)
for model in models:
if model.results is None:
# No results on pretrained model.
datasets['Pre-trained Models'].append(model)
else:
datasets[model.results[0].dataset].append(model)
for dataset, models in datasets.items():
if dataset == 'Pre-trained Models':
readme.append(f'### {dataset}\n')
readme.append(
'The pre-trained models are only used to fine-tune, '
"and therefore cannot be trained and don't have evaluation results.\n"
)
readme.append(
'| Model | Pretrain | Params(M) | Flops(G) | Config | Download |\n'
'|:---------------------:|:---------:|:---------:|:--------:|:------:|:--------:|'
)
converted_from = None
for model in models:
name = model.name.center(21)
params = model.metadata.parameters / 1e6
flops = model.metadata.flops / 1e9
converted_from = converted_from or model.data.get(
'Converted From', None)
config = './' + Path(model.config).name
weights = model.weights
star = '\*' if '3rdparty' in weights else ''
readme.append(
f'| {name}{star} | {params:.2f} | {flops:.2f} | [config]({config}) | [model]({weights}) |'
),
if converted_from is not None:
readme.append('')
readme.append(
f"*Models with \* are converted from the [official repo]({converted_from['Code']}).*\n"
)
else:
readme.append(f'### {dataset}\n')
readme.append(
'| Model | Pretrain | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |\n'
'|:---------------------:|:----------:|:---------:|:--------:|:---------:|:---------:|:------:|:--------:|'
)
converted_from = None
for model in models:
name = model.name.center(21)
params = model.metadata.parameters / 1e6
flops = model.metadata.flops / 1e9
metrics = model.results[0].metrics
top1 = metrics.get('Top 1 Accuracy')
top5 = metrics.get('Top 5 Accuracy', 0)
converted_from = converted_from or model.data.get(
'Converted From', None)
config = './' + Path(model.config).name
weights = model.weights
star = '\*' if '3rdparty' in weights else ''
if 'in21k-pre' in weights:
pretrain = 'ImageNet 21k'
else:
pretrain = 'From scratch'
readme.append(
f'| {name}{star} | {pretrain} | {params:.2f} | {flops:.2f} | {top1:.2f} | {top5:.2f} | [config]({config}) | [model]({weights}) |'
),
if converted_from is not None:
readme.append('')
readme.append(
f"*Models with \* are converted from the [official repo]({converted_from['Code']}). "
'The config files of these models are only for inference. '
"We don't ensure these config files' training accuracy and welcome you to contribute your reproduction results.*\n"
)
def main():
args = parse_args()
metafile = load(str(args.metafile))
readme_lines = []
if not args.table:
add_title(metafile, readme_lines)
add_abstract(metafile, readme_lines)
add_models(metafile, readme_lines)
if not args.table:
readme_lines.append('## Citation\n')
readme_lines.append('```bibtex\n\n```\n')
print('\n'.join(readme_lines))
if __name__ == '__main__':
main()