mmpretrain/tests/test_engine/test_hooks/test_visualization_hook.py
Ma Zerun 97c4ae8805
[Improve] Update registries of mmcls. (#1306)
* [Improve] Update registries of mmcls.

* Update according to comments
2023-01-11 15:20:51 +08:00

140 lines
5.1 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import tempfile
from unittest import TestCase
from unittest.mock import ANY, MagicMock, patch
import torch
from mmengine.runner import EpochBasedTrainLoop, IterBasedTrainLoop
from mmcls.engine import VisualizationHook
from mmcls.registry import HOOKS
from mmcls.structures import ClsDataSample
from mmcls.visualization import ClsVisualizer
class TestVisualizationHook(TestCase):
def setUp(self) -> None:
ClsVisualizer.get_instance('visualizer')
data_sample = ClsDataSample().set_gt_label(1).set_pred_label(2)
data_sample.set_metainfo({'img_path': 'tests/data/color.jpg'})
self.data_batch = {
'inputs': torch.randint(0, 256, (10, 3, 224, 224)),
'data_sample': [data_sample] * 10
}
self.outputs = [data_sample] * 10
self.tmpdir = tempfile.TemporaryDirectory()
def test_draw_samples(self):
# test enable=False
cfg = dict(type='VisualizationHook', enable=False)
hook: VisualizationHook = HOOKS.build(cfg)
with patch.object(hook._visualizer, 'add_datasample') as mock:
hook._draw_samples(1, self.data_batch, self.outputs, step=1)
mock.assert_not_called()
# test enable=True
cfg = dict(type='VisualizationHook', enable=True, show=True)
hook: VisualizationHook = HOOKS.build(cfg)
with patch.object(hook._visualizer, 'add_datasample') as mock:
hook._draw_samples(0, self.data_batch, self.outputs, step=0)
mock.assert_called_once_with(
'color.jpg',
image=ANY,
data_sample=self.outputs[0],
step=0,
show=True)
# test samples without path
cfg = dict(type='VisualizationHook', enable=True)
hook: VisualizationHook = HOOKS.build(cfg)
with patch.object(hook._visualizer, 'add_datasample') as mock:
outputs = [ClsDataSample()] * 10
hook._draw_samples(0, self.data_batch, outputs, step=0)
mock.assert_called_once_with(
'0', image=ANY, data_sample=outputs[0], step=0, show=False)
# test out_dir
cfg = dict(
type='VisualizationHook', enable=True, out_dir=self.tmpdir.name)
hook: VisualizationHook = HOOKS.build(cfg)
with patch.object(hook._visualizer, 'add_datasample') as mock:
hook._draw_samples(0, self.data_batch, self.outputs, step=0)
mock.assert_called_once_with(
'color.jpg',
image=ANY,
data_sample=self.outputs[0],
step=0,
show=False,
out_file=osp.join(self.tmpdir.name, 'color.jpg_0.png'))
# test sample idx
cfg = dict(type='VisualizationHook', enable=True, interval=4)
hook: VisualizationHook = HOOKS.build(cfg)
with patch.object(hook._visualizer, 'add_datasample') as mock:
hook._draw_samples(1, self.data_batch, self.outputs, step=0)
mock.assert_called_with(
'color.jpg',
image=ANY,
data_sample=self.outputs[2],
step=0,
show=False)
mock.assert_called_with(
'color.jpg',
image=ANY,
data_sample=self.outputs[6],
step=0,
show=False)
def test_after_val_iter(self):
runner = MagicMock()
# test epoch-based
runner.train_loop = MagicMock(spec=EpochBasedTrainLoop)
runner.epoch = 5
cfg = dict(type='VisualizationHook', enable=True)
hook = HOOKS.build(cfg)
with patch.object(hook._visualizer, 'add_datasample') as mock:
hook.after_val_iter(runner, 0, self.data_batch, self.outputs)
mock.assert_called_once_with(
'color.jpg',
image=ANY,
data_sample=self.outputs[0],
step=5,
show=False)
# test iter-based
runner.train_loop = MagicMock(spec=IterBasedTrainLoop)
runner.iter = 300
cfg = dict(type='VisualizationHook', enable=True)
hook = HOOKS.build(cfg)
with patch.object(hook._visualizer, 'add_datasample') as mock:
hook.after_val_iter(runner, 0, self.data_batch, self.outputs)
mock.assert_called_once_with(
'color.jpg',
image=ANY,
data_sample=self.outputs[0],
step=300,
show=False)
def test_after_test_iter(self):
runner = MagicMock()
cfg = dict(type='VisualizationHook', enable=True)
hook = HOOKS.build(cfg)
with patch.object(hook._visualizer, 'add_datasample') as mock:
hook.after_test_iter(runner, 0, self.data_batch, self.outputs)
mock.assert_called_once_with(
'color.jpg',
image=ANY,
data_sample=self.outputs[0],
step=0,
show=False)
def tearDown(self) -> None:
self.tmpdir.cleanup()