mmpretrain/tests/test_data/test_datasets/test_common.py

764 lines
26 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os
import os.path as osp
import pickle
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import torch
from mmcls.datasets import DATASETS
from mmcls.datasets import BaseDataset as _BaseDataset
from mmcls.datasets import MultiLabelDataset as _MultiLabelDataset
ASSETS_ROOT = osp.abspath(
osp.join(osp.dirname(__file__), '../../data/dataset'))
class BaseDataset(_BaseDataset):
def load_annotations(self):
pass
class MultiLabelDataset(_MultiLabelDataset):
def load_annotations(self):
pass
DATASETS.module_dict['BaseDataset'] = BaseDataset
DATASETS.module_dict['MultiLabelDataset'] = MultiLabelDataset
class TestBaseDataset(TestCase):
DATASET_TYPE = 'BaseDataset'
DEFAULT_ARGS = dict(data_prefix='', pipeline=[])
def test_initialize(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
with patch.object(dataset_class, 'load_annotations'):
# Test default behavior
cfg = {**self.DEFAULT_ARGS, 'classes': None, 'ann_file': None}
dataset = dataset_class(**cfg)
self.assertEqual(dataset.CLASSES, dataset_class.CLASSES)
self.assertFalse(dataset.test_mode)
self.assertIsNone(dataset.ann_file)
# Test setting classes as a tuple
cfg = {**self.DEFAULT_ARGS, 'classes': ('bus', 'car')}
dataset = dataset_class(**cfg)
self.assertEqual(dataset.CLASSES, ('bus', 'car'))
# Test setting classes as a tuple
cfg = {**self.DEFAULT_ARGS, 'classes': ['bus', 'car']}
dataset = dataset_class(**cfg)
self.assertEqual(dataset.CLASSES, ['bus', 'car'])
# Test setting classes through a file
classes_file = osp.join(ASSETS_ROOT, 'classes.txt')
cfg = {**self.DEFAULT_ARGS, 'classes': classes_file}
dataset = dataset_class(**cfg)
self.assertEqual(dataset.CLASSES, ['bus', 'car'])
self.assertEqual(dataset.class_to_idx, {'bus': 0, 'car': 1})
# Test invalid classes
cfg = {**self.DEFAULT_ARGS, 'classes': dict(classes=1)}
with self.assertRaisesRegex(ValueError, "type <class 'dict'>"):
dataset_class(**cfg)
def test_get_cat_ids(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
fake_ann = [
dict(
img_prefix='',
img_info=dict(),
gt_label=np.array(0, dtype=np.int64))
]
with patch.object(dataset_class, 'load_annotations') as mock_load:
mock_load.return_value = fake_ann
dataset = dataset_class(**self.DEFAULT_ARGS)
cat_ids = dataset.get_cat_ids(0)
self.assertIsInstance(cat_ids, list)
self.assertEqual(len(cat_ids), 1)
self.assertIsInstance(cat_ids[0], int)
def test_evaluate(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
fake_ann = [
dict(gt_label=np.array(0, dtype=np.int64)),
dict(gt_label=np.array(0, dtype=np.int64)),
dict(gt_label=np.array(1, dtype=np.int64)),
dict(gt_label=np.array(2, dtype=np.int64)),
dict(gt_label=np.array(1, dtype=np.int64)),
dict(gt_label=np.array(0, dtype=np.int64)),
]
with patch.object(dataset_class, 'load_annotations') as mock_load:
mock_load.return_value = fake_ann
dataset = dataset_class(**self.DEFAULT_ARGS)
fake_results = np.array([
[0.7, 0.0, 0.3],
[0.5, 0.2, 0.3],
[0.4, 0.5, 0.1],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
])
eval_results = dataset.evaluate(
fake_results,
metric=['precision', 'recall', 'f1_score', 'support', 'accuracy'],
metric_options={'topk': 1})
# Test results
self.assertAlmostEqual(
eval_results['precision'], (1 + 1 + 1 / 3) / 3 * 100.0, places=4)
self.assertAlmostEqual(
eval_results['recall'], (2 / 3 + 1 / 2 + 1) / 3 * 100.0, places=4)
self.assertAlmostEqual(
eval_results['f1_score'], (4 / 5 + 2 / 3 + 1 / 2) / 3 * 100.0,
places=4)
self.assertEqual(eval_results['support'], 6)
self.assertAlmostEqual(eval_results['accuracy'], 4 / 6 * 100, places=4)
# test indices
eval_results_ = dataset.evaluate(
fake_results[:5],
metric=['precision', 'recall', 'f1_score', 'support', 'accuracy'],
metric_options={'topk': 1},
indices=range(5))
self.assertAlmostEqual(
eval_results_['precision'], (1 + 1 + 1 / 2) / 3 * 100.0, places=4)
self.assertAlmostEqual(
eval_results_['recall'], (1 + 1 / 2 + 1) / 3 * 100.0, places=4)
self.assertAlmostEqual(
eval_results_['f1_score'], (1 + 2 / 3 + 2 / 3) / 3 * 100.0,
places=4)
self.assertEqual(eval_results_['support'], 5)
self.assertAlmostEqual(
eval_results_['accuracy'], 4 / 5 * 100, places=4)
# test input as tensor
fake_results_tensor = torch.from_numpy(fake_results)
eval_results_ = dataset.evaluate(
fake_results_tensor,
metric=['precision', 'recall', 'f1_score', 'support', 'accuracy'],
metric_options={'topk': 1})
assert eval_results_ == eval_results
# test thr
eval_results = dataset.evaluate(
fake_results,
metric=['precision', 'recall', 'f1_score', 'accuracy'],
metric_options={
'thrs': 0.6,
'topk': 1
})
self.assertAlmostEqual(
eval_results['precision'], (1 + 0 + 1 / 3) / 3 * 100.0, places=4)
self.assertAlmostEqual(
eval_results['recall'], (1 / 3 + 0 + 1) / 3 * 100.0, places=4)
self.assertAlmostEqual(
eval_results['f1_score'], (1 / 2 + 0 + 1 / 2) / 3 * 100.0,
places=4)
self.assertAlmostEqual(eval_results['accuracy'], 2 / 6 * 100, places=4)
# thrs must be a number or tuple
with self.assertRaises(TypeError):
dataset.evaluate(
fake_results,
metric=['precision', 'recall', 'f1_score', 'accuracy'],
metric_options={
'thrs': 'thr',
'topk': 1
})
# test topk and thr as tuple
eval_results = dataset.evaluate(
fake_results,
metric=['precision', 'recall', 'f1_score', 'accuracy'],
metric_options={
'thrs': (0.5, 0.6),
'topk': (1, 2)
})
self.assertEqual(
{
'precision_thr_0.50', 'precision_thr_0.60', 'recall_thr_0.50',
'recall_thr_0.60', 'f1_score_thr_0.50', 'f1_score_thr_0.60',
'accuracy_top-1_thr_0.50', 'accuracy_top-1_thr_0.60',
'accuracy_top-2_thr_0.50', 'accuracy_top-2_thr_0.60'
}, eval_results.keys())
self.assertIsInstance(eval_results['precision_thr_0.50'], float)
self.assertIsInstance(eval_results['recall_thr_0.50'], float)
self.assertIsInstance(eval_results['f1_score_thr_0.50'], float)
self.assertIsInstance(eval_results['accuracy_top-1_thr_0.50'], float)
# test topk is tuple while thrs is number
eval_results = dataset.evaluate(
fake_results,
metric='accuracy',
metric_options={
'thrs': 0.5,
'topk': (1, 2)
})
self.assertEqual({'accuracy_top-1', 'accuracy_top-2'},
eval_results.keys())
self.assertIsInstance(eval_results['accuracy_top-1'], float)
# test topk is number while thrs is tuple
eval_results = dataset.evaluate(
fake_results,
metric='accuracy',
metric_options={
'thrs': (0.5, 0.6),
'topk': 1
})
self.assertEqual({'accuracy_thr_0.50', 'accuracy_thr_0.60'},
eval_results.keys())
self.assertIsInstance(eval_results['accuracy_thr_0.50'], float)
# test evaluation results for classes
eval_results = dataset.evaluate(
fake_results,
metric=['precision', 'recall', 'f1_score', 'support'],
metric_options={'average_mode': 'none'})
self.assertEqual(eval_results['precision'].shape, (3, ))
self.assertEqual(eval_results['recall'].shape, (3, ))
self.assertEqual(eval_results['f1_score'].shape, (3, ))
self.assertEqual(eval_results['support'].shape, (3, ))
# the average_mode method must be valid
with self.assertRaises(ValueError):
dataset.evaluate(
fake_results,
metric=['precision', 'recall', 'f1_score', 'support'],
metric_options={'average_mode': 'micro'})
# the metric must be valid for the dataset
with self.assertRaisesRegex(ValueError,
"{'unknown'} is not supported"):
dataset.evaluate(fake_results, metric='unknown')
class TestMultiLabelDataset(TestBaseDataset):
DATASET_TYPE = 'MultiLabelDataset'
def test_get_cat_ids(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
fake_ann = [
dict(
img_prefix='',
img_info=dict(),
gt_label=np.array([0, 1, 1, 0], dtype=np.uint8))
]
with patch.object(dataset_class, 'load_annotations') as mock_load:
mock_load.return_value = fake_ann
dataset = dataset_class(**self.DEFAULT_ARGS)
cat_ids = dataset.get_cat_ids(0)
self.assertIsInstance(cat_ids, list)
self.assertEqual(len(cat_ids), 2)
self.assertIsInstance(cat_ids[0], int)
self.assertEqual(cat_ids, [1, 2])
def test_evaluate(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
fake_ann = [
dict(gt_label=np.array([1, 1, 0, -1], dtype=np.int8)),
dict(gt_label=np.array([1, 1, 0, -1], dtype=np.int8)),
dict(gt_label=np.array([0, -1, 1, -1], dtype=np.int8)),
dict(gt_label=np.array([0, 1, 0, -1], dtype=np.int8)),
dict(gt_label=np.array([0, 1, 0, -1], dtype=np.int8)),
]
with patch.object(dataset_class, 'load_annotations') as mock_load:
mock_load.return_value = fake_ann
dataset = dataset_class(**self.DEFAULT_ARGS)
fake_results = np.array([
[0.9, 0.8, 0.3, 0.2],
[0.1, 0.2, 0.2, 0.1],
[0.7, 0.5, 0.9, 0.3],
[0.8, 0.1, 0.1, 0.2],
[0.8, 0.1, 0.1, 0.2],
])
# the metric must be valid for the dataset
with self.assertRaisesRegex(ValueError,
"{'unknown'} is not supported"):
dataset.evaluate(fake_results, metric='unknown')
# only one metric
eval_results = dataset.evaluate(fake_results, metric='mAP')
self.assertEqual(eval_results.keys(), {'mAP'})
self.assertAlmostEqual(eval_results['mAP'], 67.5, places=4)
# multiple metrics
eval_results = dataset.evaluate(
fake_results, metric=['mAP', 'CR', 'OF1'])
self.assertEqual(eval_results.keys(), {'mAP', 'CR', 'OF1'})
self.assertAlmostEqual(eval_results['mAP'], 67.50, places=2)
self.assertAlmostEqual(eval_results['CR'], 43.75, places=2)
self.assertAlmostEqual(eval_results['OF1'], 42.86, places=2)
class TestCustomDataset(TestBaseDataset):
DATASET_TYPE = 'CustomDataset'
def test_load_annotations(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
# test load without ann_file
cfg = {
**self.DEFAULT_ARGS,
'data_prefix': ASSETS_ROOT,
'ann_file': None,
}
dataset = dataset_class(**cfg)
self.assertEqual(len(dataset), 3)
self.assertEqual(dataset.CLASSES, ['a', 'b']) # auto infer classes
self.assertEqual(
dataset.data_infos[0], {
'img_prefix': ASSETS_ROOT,
'img_info': {
'filename': 'a/1.JPG'
},
'gt_label': np.array(0)
})
self.assertEqual(
dataset.data_infos[2], {
'img_prefix': ASSETS_ROOT,
'img_info': {
'filename': 'b/subb/3.jpg'
},
'gt_label': np.array(1)
})
# test ann_file assertion
cfg = {
**self.DEFAULT_ARGS,
'data_prefix': ASSETS_ROOT,
'ann_file': ['ann_file.txt'],
}
with self.assertRaisesRegex(TypeError, 'must be a str'):
dataset_class(**cfg)
# test load with ann_file
cfg = {
**self.DEFAULT_ARGS,
'data_prefix': ASSETS_ROOT,
'ann_file': osp.join(ASSETS_ROOT, 'ann.txt'),
}
dataset = dataset_class(**cfg)
self.assertEqual(len(dataset), 3)
# custom dataset won't infer CLASSES from ann_file
self.assertEqual(dataset.CLASSES, dataset_class.CLASSES)
self.assertEqual(
dataset.data_infos[0], {
'img_prefix': ASSETS_ROOT,
'img_info': {
'filename': 'a/1.JPG'
},
'gt_label': np.array(0)
})
self.assertEqual(
dataset.data_infos[2], {
'img_prefix': ASSETS_ROOT,
'img_info': {
'filename': 'b/subb/2.jpeg'
},
'gt_label': np.array(1)
})
# test extensions filter
cfg = {
**self.DEFAULT_ARGS, 'data_prefix': ASSETS_ROOT,
'ann_file': None,
'extensions': ('.txt', )
}
with self.assertRaisesRegex(RuntimeError,
'Supported extensions are: .txt'):
dataset_class(**cfg)
cfg = {
**self.DEFAULT_ARGS, 'data_prefix': ASSETS_ROOT,
'ann_file': None,
'extensions': ('.jpeg', )
}
with self.assertWarnsRegex(UserWarning,
'Supported extensions are: .jpeg'):
dataset = dataset_class(**cfg)
self.assertEqual(len(dataset), 1)
self.assertEqual(
dataset.data_infos[0], {
'img_prefix': ASSETS_ROOT,
'img_info': {
'filename': 'b/2.jpeg'
},
'gt_label': np.array(1)
})
# test classes check
cfg = {
**self.DEFAULT_ARGS,
'data_prefix': ASSETS_ROOT,
'classes': ['apple', 'banana'],
'ann_file': None,
}
dataset = dataset_class(**cfg)
self.assertEqual(dataset.CLASSES, ['apple', 'banana'])
cfg['classes'] = ['apple', 'banana', 'dog']
with self.assertRaisesRegex(AssertionError,
r"\(2\) doesn't match .* classes \(3\)"):
dataset_class(**cfg)
class TestImageNet(TestBaseDataset):
DATASET_TYPE = 'ImageNet'
def test_load_annotations(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
# test classes number
cfg = {
**self.DEFAULT_ARGS,
'data_prefix': ASSETS_ROOT,
'ann_file': None,
}
with self.assertRaisesRegex(
AssertionError, r"\(2\) doesn't match .* classes \(1000\)"):
dataset_class(**cfg)
# test override classes
cfg = {
**self.DEFAULT_ARGS,
'data_prefix': ASSETS_ROOT,
'classes': ['cat', 'dog'],
'ann_file': None,
}
dataset = dataset_class(**cfg)
self.assertEqual(len(dataset), 3)
self.assertEqual(dataset.CLASSES, ['cat', 'dog'])
class TestImageNet21k(TestBaseDataset):
DATASET_TYPE = 'ImageNet21k'
DEFAULT_ARGS = dict(
data_prefix=ASSETS_ROOT,
pipeline=[],
classes=['cat', 'dog'],
ann_file=osp.join(ASSETS_ROOT, 'ann.txt'),
serialize_data=False)
def test_initialize(self):
super().test_initialize()
dataset_class = DATASETS.get(self.DATASET_TYPE)
# The multi_label option is not implemented not.
cfg = {**self.DEFAULT_ARGS, 'multi_label': True}
with self.assertRaisesRegex(NotImplementedError, 'not supported'):
dataset_class(**cfg)
# Warn about ann_file
cfg = {**self.DEFAULT_ARGS, 'ann_file': None}
with self.assertWarnsRegex(UserWarning, 'specify the `ann_file`'):
dataset_class(**cfg)
# Warn about classes
cfg = {**self.DEFAULT_ARGS, 'classes': None}
with self.assertWarnsRegex(UserWarning, 'specify the `classes`'):
dataset_class(**cfg)
def test_load_annotations(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
# Test with serialize_data=False
cfg = {**self.DEFAULT_ARGS, 'serialize_data': False}
dataset = dataset_class(**cfg)
self.assertEqual(len(dataset.data_infos), 3)
self.assertEqual(len(dataset), 3)
self.assertEqual(
dataset[0], {
'img_prefix': ASSETS_ROOT,
'img_info': {
'filename': 'a/1.JPG'
},
'gt_label': np.array(0)
})
self.assertEqual(
dataset[2], {
'img_prefix': ASSETS_ROOT,
'img_info': {
'filename': 'b/subb/2.jpeg'
},
'gt_label': np.array(1)
})
# Test with serialize_data=True
cfg = {**self.DEFAULT_ARGS, 'serialize_data': True}
dataset = dataset_class(**cfg)
self.assertEqual(len(dataset.data_infos), 0) # data_infos is clear.
self.assertEqual(len(dataset), 3)
self.assertEqual(
dataset[0], {
'img_prefix': ASSETS_ROOT,
'img_info': {
'filename': 'a/1.JPG'
},
'gt_label': np.array(0)
})
self.assertEqual(
dataset[2], {
'img_prefix': ASSETS_ROOT,
'img_info': {
'filename': 'b/subb/2.jpeg'
},
'gt_label': np.array(1)
})
class TestMNIST(TestBaseDataset):
DATASET_TYPE = 'MNIST'
@classmethod
def setUpClass(cls) -> None:
super().setUpClass()
tmpdir = tempfile.TemporaryDirectory()
cls.tmpdir = tmpdir
data_prefix = tmpdir.name
cls.DEFAULT_ARGS = dict(data_prefix=data_prefix, pipeline=[])
dataset_class = DATASETS.get(cls.DATASET_TYPE)
def rm_suffix(s):
return s[:s.rfind('.')]
train_image_file = osp.join(
data_prefix,
rm_suffix(dataset_class.resources['train_image_file'][0]))
train_label_file = osp.join(
data_prefix,
rm_suffix(dataset_class.resources['train_label_file'][0]))
test_image_file = osp.join(
data_prefix,
rm_suffix(dataset_class.resources['test_image_file'][0]))
test_label_file = osp.join(
data_prefix,
rm_suffix(dataset_class.resources['test_label_file'][0]))
cls.fake_img = np.random.randint(0, 255, size=(28, 28), dtype=np.uint8)
cls.fake_label = np.random.randint(0, 10, size=(1, ), dtype=np.uint8)
for file in [train_image_file, test_image_file]:
magic = b'\x00\x00\x08\x03' # num_dims = 3, type = uint8
head = b'\x00\x00\x00\x01' + b'\x00\x00\x00\x1c' * 2 # (1, 28, 28)
data = magic + head + cls.fake_img.flatten().tobytes()
with open(file, 'wb') as f:
f.write(data)
for file in [train_label_file, test_label_file]:
magic = b'\x00\x00\x08\x01' # num_dims = 3, type = uint8
head = b'\x00\x00\x00\x01' # (1, )
data = magic + head + cls.fake_label.tobytes()
with open(file, 'wb') as f:
f.write(data)
def test_load_annotations(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
with patch.object(dataset_class, 'download'):
# Test default behavior
dataset = dataset_class(**self.DEFAULT_ARGS)
self.assertEqual(len(dataset), 1)
data_info = dataset[0]
np.testing.assert_equal(data_info['img'], self.fake_img)
np.testing.assert_equal(data_info['gt_label'], self.fake_label)
@classmethod
def tearDownClass(cls):
cls.tmpdir.cleanup()
class TestCIFAR10(TestBaseDataset):
DATASET_TYPE = 'CIFAR10'
@classmethod
def setUpClass(cls) -> None:
super().setUpClass()
tmpdir = tempfile.TemporaryDirectory()
cls.tmpdir = tmpdir
data_prefix = tmpdir.name
cls.DEFAULT_ARGS = dict(data_prefix=data_prefix, pipeline=[])
dataset_class = DATASETS.get(cls.DATASET_TYPE)
base_folder = osp.join(data_prefix, dataset_class.base_folder)
os.mkdir(base_folder)
cls.fake_imgs = np.random.randint(
0, 255, size=(6, 3 * 32 * 32), dtype=np.uint8)
cls.fake_labels = np.random.randint(0, 10, size=(6, ))
cls.fake_classes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
batch1 = dict(
data=cls.fake_imgs[:2], labels=cls.fake_labels[:2].tolist())
with open(osp.join(base_folder, 'data_batch_1'), 'wb') as f:
f.write(pickle.dumps(batch1))
batch2 = dict(
data=cls.fake_imgs[2:4], labels=cls.fake_labels[2:4].tolist())
with open(osp.join(base_folder, 'data_batch_2'), 'wb') as f:
f.write(pickle.dumps(batch2))
test_batch = dict(
data=cls.fake_imgs[4:], labels=cls.fake_labels[4:].tolist())
with open(osp.join(base_folder, 'test_batch'), 'wb') as f:
f.write(pickle.dumps(test_batch))
meta = {dataset_class.meta['key']: cls.fake_classes}
meta_filename = dataset_class.meta['filename']
with open(osp.join(base_folder, meta_filename), 'wb') as f:
f.write(pickle.dumps(meta))
dataset_class.train_list = [['data_batch_1', None],
['data_batch_2', None]]
dataset_class.test_list = [['test_batch', None]]
dataset_class.meta['md5'] = None
def test_load_annotations(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
# Test default behavior
dataset = dataset_class(**self.DEFAULT_ARGS)
self.assertEqual(len(dataset), 4)
self.assertEqual(dataset.CLASSES, self.fake_classes)
data_info = dataset[0]
fake_img = self.fake_imgs[0].reshape(3, 32, 32).transpose(1, 2, 0)
np.testing.assert_equal(data_info['img'], fake_img)
np.testing.assert_equal(data_info['gt_label'], self.fake_labels[0])
# Test with test_mode=True
cfg = {**self.DEFAULT_ARGS, 'test_mode': True}
dataset = dataset_class(**cfg)
self.assertEqual(len(dataset), 2)
data_info = dataset[0]
fake_img = self.fake_imgs[4].reshape(3, 32, 32).transpose(1, 2, 0)
np.testing.assert_equal(data_info['img'], fake_img)
np.testing.assert_equal(data_info['gt_label'], self.fake_labels[4])
@classmethod
def tearDownClass(cls):
cls.tmpdir.cleanup()
class TestCIFAR100(TestCIFAR10):
DATASET_TYPE = 'CIFAR100'
class TestVOC(TestMultiLabelDataset):
DATASET_TYPE = 'VOC'
DEFAULT_ARGS = dict(data_prefix='VOC2007', pipeline=[])
class TestCUB(TestBaseDataset):
DATASET_TYPE = 'CUB'
@classmethod
def setUpClass(cls) -> None:
super().setUpClass()
tmpdir = tempfile.TemporaryDirectory()
cls.tmpdir = tmpdir
cls.data_prefix = tmpdir.name
cls.ann_file = osp.join(cls.data_prefix, 'ann_file.txt')
cls.image_class_labels_file = osp.join(cls.data_prefix, 'classes.txt')
cls.train_test_split_file = osp.join(cls.data_prefix, 'split.txt')
cls.train_test_split_file2 = osp.join(cls.data_prefix, 'split2.txt')
cls.DEFAULT_ARGS = dict(
data_prefix=cls.data_prefix,
pipeline=[],
ann_file=cls.ann_file,
image_class_labels_file=cls.image_class_labels_file,
train_test_split_file=cls.train_test_split_file)
with open(cls.ann_file, 'w') as f:
f.write('\n'.join([
'1 1.txt',
'2 2.txt',
'3 3.txt',
]))
with open(cls.image_class_labels_file, 'w') as f:
f.write('\n'.join([
'1 2',
'2 3',
'3 1',
]))
with open(cls.train_test_split_file, 'w') as f:
f.write('\n'.join([
'1 0',
'2 1',
'3 1',
]))
with open(cls.train_test_split_file2, 'w') as f:
f.write('\n'.join([
'1 0',
'2 1',
]))
def test_load_annotations(self):
dataset_class = DATASETS.get(self.DATASET_TYPE)
# Test default behavior
dataset = dataset_class(**self.DEFAULT_ARGS)
self.assertEqual(len(dataset), 2)
self.assertEqual(dataset.CLASSES, dataset_class.CLASSES)
data_info = dataset[0]
np.testing.assert_equal(data_info['img_prefix'], self.data_prefix)
np.testing.assert_equal(data_info['img_info'], {'filename': '2.txt'})
np.testing.assert_equal(data_info['gt_label'], 3 - 1)
# Test with test_mode=True
cfg = {**self.DEFAULT_ARGS, 'test_mode': True}
dataset = dataset_class(**cfg)
self.assertEqual(len(dataset), 1)
data_info = dataset[0]
np.testing.assert_equal(data_info['img_prefix'], self.data_prefix)
np.testing.assert_equal(data_info['img_info'], {'filename': '1.txt'})
np.testing.assert_equal(data_info['gt_label'], 2 - 1)
# Test if the numbers of line are not match
cfg = {
**self.DEFAULT_ARGS, 'train_test_split_file':
self.train_test_split_file2
}
with self.assertRaisesRegex(AssertionError, 'should have same length'):
dataset_class(**cfg)
@classmethod
def tearDownClass(cls):
cls.tmpdir.cleanup()