mmpretrain/.dev_scripts/compare_init.py

122 lines
4.2 KiB
Python

#!/usr/bin/env python
import argparse
from pathlib import Path
import matplotlib.pyplot as plt
import torch
from ckpt_tree import StateDictTree, ckpt_to_state_dict
from rich.progress import track
from scipy import stats
prog_description = """\
Compare the initialization distribution between state dicts by Kolmogorov-Smirnov test.
""" # noqa: E501
def parse_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description=prog_description)
parser.add_argument(
'model_a',
type=Path,
help='The path of the first checkpoint or model config.')
parser.add_argument(
'model_b',
type=Path,
help='The path of the second checkpoint or model config.')
parser.add_argument(
'--show',
action='store_true',
help='Whether to draw the KDE of variables')
parser.add_argument(
'-p',
default=0.01,
type=float,
help='The threshold of p-value. '
'Higher threshold means more strict test.')
args = parser.parse_args()
return args
def compare_distribution(state_dict_a, state_dict_b, p_thres):
assert len(state_dict_a) == len(state_dict_b)
for k, v1 in state_dict_a.items():
assert k in state_dict_b
v2 = state_dict_b[k]
v1 = v1.cpu().flatten()
v2 = v2.cpu().flatten()
pvalue = stats.kstest(v1, v2).pvalue
if pvalue < p_thres:
yield k, pvalue, v1, v2
def state_dict_from_cfg_or_ckpt(path, state_key=None):
if path.suffix in ['.json', '.py', '.yml']:
from mmengine.runner import get_state_dict
from mmpretrain.apis import init_model
model = init_model(path, device='cpu')
model.init_weights()
return get_state_dict(model)
else:
ckpt = torch.load(path, map_location='cpu')
return ckpt_to_state_dict(ckpt, state_key)
def main():
args = parse_args()
state_dict_a = state_dict_from_cfg_or_ckpt(args.model_a)
state_dict_b = state_dict_from_cfg_or_ckpt(args.model_b)
compare_keys = state_dict_a.keys() & state_dict_b.keys()
if len(compare_keys) == 0:
raise ValueError("The state dicts don't match, please convert "
'to the same keys before comparison.')
root = StateDictTree()
for key in track(compare_keys):
if state_dict_a[key].shape != state_dict_b[key].shape:
raise ValueError(f'The shapes of "{key}" are different. '
'Please check models in the same architecture.')
# Sample at most 30000 items to prevent long-time calcuation.
perm_ids = torch.randperm(state_dict_a[key].numel())[:30000]
value_a = state_dict_a[key].flatten()[perm_ids]
value_b = state_dict_b[key].flatten()[perm_ids]
pvalue = stats.kstest(value_a, value_b).pvalue
if pvalue < args.p:
root.add_parameter(key, round(pvalue, 4))
if args.show:
try:
import seaborn as sns
except ImportError:
raise ImportError('Please install `seaborn` by '
'`pip install seaborn` to show KDE.')
sample_a = str([round(v.item(), 2) for v in value_a[:10]])
sample_b = str([round(v.item(), 2) for v in value_b[:10]])
if value_a.std() > 0:
sns.kdeplot(value_a, fill=True)
else:
sns.scatterplot(x=[value_a[0].item()], y=[1])
if value_b.std() > 0:
sns.kdeplot(value_b, fill=True)
else:
sns.scatterplot(x=[value_b[0].item()], y=[1])
plt.legend([
f'{args.model_a.stem}: {sample_a}',
f'{args.model_b.stem}: {sample_b}'
])
plt.title(key)
plt.show()
if len(root) > 0:
root.draw_tree(with_value=True)
print("Above parameters didn't pass the test, "
'and the values are their similarity score.')
else:
print('The distributions of all weights are the same.')
if __name__ == '__main__':
main()