mmpretrain/configs/simclr/simclr_resnet50_8xb32-coslr-200e_in1k.py
Yixiao Fang 08dc8c75d3
[Refactor] Add selfsup algorithms. (#1389)
* remove basehead

* add moco series

* add byol simclr simsiam

* add ut

* update configs

* add simsiam hook

* add and refactor beit

* update ut

* add cae

* update extract_feat

* refactor cae

* add mae

* refactor data preprocessor

* update heads

* add maskfeat

* add milan

* add simmim

* add mixmim

* fix lint

* fix ut

* fix lint

* add eva

* add densecl

* add barlowtwins

* add swav

* fix lint

* update readtherdocs rst

* update docs

* update

* Decrease UT memory usage

* Fix docstring

* update DALLEEncoder

* Update model docs

* refactor dalle encoder

* update docstring

* fix ut

* fix config error

* add val_cfg and test_cfg

* refactor clip generator

* fix lint

* pass check

* fix ut

* add lars

* update type of BEiT in configs

* Use MMEngine style momentum in EMA.

* apply mmpretrain solarize

---------

Co-authored-by: mzr1996 <mzr1996@163.com>
2023-03-06 16:53:15 +08:00

48 lines
1.4 KiB
Python

_base_ = [
'../_base_/datasets/imagenet_bs32_simclr.py',
'../_base_/schedules/imagenet_lars_coslr_200e.py',
'../_base_/default_runtime.py',
]
# model settings
model = dict(
type='SimCLR',
backbone=dict(
type='ResNet',
depth=50,
norm_cfg=dict(type='SyncBN'),
zero_init_residual=True),
neck=dict(
type='NonLinearNeck', # SimCLR non-linear neck
in_channels=2048,
hid_channels=2048,
out_channels=128,
num_layers=2,
with_avg_pool=True),
head=dict(
type='ContrastiveHead',
loss=dict(type='CrossEntropyLoss'),
temperature=0.1),
)
# optimizer
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='LARS', lr=0.3, momentum=0.9, weight_decay=1e-6),
paramwise_cfg=dict(
custom_keys={
'bn': dict(decay_mult=0, lars_exclude=True),
'bias': dict(decay_mult=0, lars_exclude=True),
# bn layer in ResNet block downsample module
'downsample.1': dict(decay_mult=0, lars_exclude=True),
}))
# runtime settings
default_hooks = dict(
# only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=3))
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=256)