mmpretrain/configs/deit/deit-small_pt-4xb256_in1k.py

45 lines
1.3 KiB
Python

# In small and tiny arch, remove drop path and EMA hook comparing with the
# original config
_base_ = [
'../_base_/datasets/imagenet_bs64_swin_224.py',
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../_base_/default_runtime.py'
]
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
arch='deit-small',
img_size=224,
patch_size=16),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=384,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=.02),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
],
train_cfg=dict(augments=[
dict(type='BatchMixup', alpha=0.8, num_classes=1000, prob=0.5),
dict(type='BatchCutMix', alpha=1.0, num_classes=1000, prob=0.5)
]))
# data settings
data = dict(samples_per_gpu=256, workers_per_gpu=5)
paramwise_cfg = dict(
norm_decay_mult=0.0,
bias_decay_mult=0.0,
custom_keys={
'.cls_token': dict(decay_mult=0.0),
'.pos_embed': dict(decay_mult=0.0)
})
optimizer = dict(paramwise_cfg=paramwise_cfg)