mmpretrain/tests/test_models/test_selfsup/test_spark.py

52 lines
1.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import platform
import pytest
import torch
from mmpretrain.models import SparK
from mmpretrain.structures import DataSample
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_spark():
data_preprocessor = {
'mean': (123.675, 116.28, 103.53),
'std': (58.395, 57.12, 57.375),
'to_rgb': True
}
backbone = dict(
type='SparseResNet',
depth=50,
out_indices=(0, 1, 2, 3),
drop_path_rate=0.05,
norm_cfg=dict(type='BN'))
neck = dict(
type='SparKLightDecoder',
feature_dim=512,
upsample_ratio=32, # equal to downsample_raito
mid_channels=0,
norm_cfg=dict(type='BN'),
last_act=False)
head = dict(
type='SparKPretrainHead',
loss=dict(type='PixelReconstructionLoss', criterion='L2'))
alg = SparK(
backbone=backbone,
neck=neck,
head=head,
data_preprocessor=data_preprocessor,
enc_dec_norm_cfg=dict(type='BN'),
)
fake_data = {
'inputs': torch.randn((2, 3, 224, 224)),
'data_sample': [DataSample() for _ in range(2)]
}
fake_inputs = alg.data_preprocessor(fake_data)
fake_loss = alg(**fake_inputs, mode='loss')
assert isinstance(fake_loss['loss'].item(), float)