mirror of
https://github.com/open-mmlab/mmpretrain.git
synced 2025-06-03 14:59:18 +08:00
* add tnt_small configs * add tnt backbone * test tnt * add tnt to model_zoo * rename the config file name * add optimizor * move tnt backbone unitest * add metric * fix keyname in arch * encapsulate "inner transformer block" and "outer transformer block" * fix TnT * Use `inner_block_cfg` and `outer_block_cfg` instead of `args` and `kwargs`. Co-authored-by: mzr1996 <mzr1996@163.com>
17 KiB
17 KiB
Model Zoo
ImageNet
ImageNet has multiple versions, but the most commonly used one is ILSVRC 2012. The ResNet family models below are trained by standard data augmentations, i.e., RandomResizedCrop, RandomHorizontalFlip and Normalize.
Model | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
---|---|---|---|---|---|---|
VGG-11 | 132.86 | 7.63 | 68.75 | 88.87 | config | model | log |
VGG-13 | 133.05 | 11.34 | 70.02 | 89.46 | config | model | log |
VGG-16 | 138.36 | 15.5 | 71.62 | 90.49 | config | model | log |
VGG-19 | 143.67 | 19.67 | 72.41 | 90.80 | config | model | log |
VGG-11-BN | 132.87 | 7.64 | 70.75 | 90.12 | config | model | log |
VGG-13-BN | 133.05 | 11.36 | 72.15 | 90.71 | config | model | log |
VGG-16-BN | 138.37 | 15.53 | 73.72 | 91.68 | config | model | log |
VGG-19-BN | 143.68 | 19.7 | 74.70 | 92.24 | config | model | log |
ResNet-18 | 11.69 | 1.82 | 70.07 | 89.44 | config | model | log |
ResNet-34 | 21.8 | 3.68 | 73.85 | 91.53 | config | model | log |
ResNet-50 | 25.56 | 4.12 | 76.55 | 93.15 | config | model | log |
ResNet-101 | 44.55 | 7.85 | 78.18 | 94.03 | config | model | log |
ResNet-152 | 60.19 | 11.58 | 78.63 | 94.16 | config | model | log |
ResNeSt-50* | 27.48 | 5.41 | 81.13 | 95.59 | model | log | |
ResNeSt-101* | 48.28 | 10.27 | 82.32 | 96.24 | model | log | |
ResNeSt-200* | 70.2 | 17.53 | 82.41 | 96.22 | model | log | |
ResNeSt-269* | 110.93 | 22.58 | 82.70 | 96.28 | model | log | |
ResNetV1D-50 | 25.58 | 4.36 | 77.54 | 93.57 | config | model | log |
ResNetV1D-101 | 44.57 | 8.09 | 78.93 | 94.48 | config | model | log |
ResNetV1D-152 | 60.21 | 11.82 | 79.41 | 94.7 | config | model | log |
ResNeXt-32x4d-50 | 25.03 | 4.27 | 77.90 | 93.66 | config | model | log |
ResNeXt-32x4d-101 | 44.18 | 8.03 | 78.71 | 94.12 | config | model | log |
ResNeXt-32x8d-101 | 88.79 | 16.5 | 79.23 | 94.58 | config | model | log |
ResNeXt-32x4d-152 | 59.95 | 11.8 | 78.93 | 94.41 | config | model | log |
SE-ResNet-50 | 28.09 | 4.13 | 77.74 | 93.84 | config | model | log |
SE-ResNet-101 | 49.33 | 7.86 | 78.26 | 94.07 | config | model | log |
ShuffleNetV1 1.0x (group=3) | 1.87 | 0.146 | 68.13 | 87.81 | config | model | log |
ShuffleNetV2 1.0x | 2.28 | 0.149 | 69.55 | 88.92 | config | model | log |
MobileNet V2 | 3.5 | 0.319 | 71.86 | 90.42 | config | model | log |
ViT-B/16* | 86.86 | 33.03 | 84.20 | 97.18 | config | model | log |
ViT-B/32* | 88.3 | 8.56 | 81.73 | 96.13 | config | model | log |
ViT-L/16* | 304.72 | 116.68 | 85.08 | 97.38 | config | model | log |
ViT-L/32* | 306.63 | 29.66 | 81.52 | 96.06 | config | model | log |
Swin-Transformer tiny | 28.29 | 4.36 | 81.18 | 95.61 | config | model | log |
Swin-Transformer small | 49.61 | 8.52 | 83.02 | 96.29 | config | model | log |
Swin-Transformer base | 87.77 | 15.14 | 83.36 | 96.44 | config | model | log |
Transformer in Transformer small* | 23.76 | 3.36 | 81.52 | 95.73 | config | model | log |
Models with * are converted from other repos, others are trained by ourselves.
CIFAR10
Model | Params(M) | Flops(G) | Top-1 (%) | Config | Download |
---|---|---|---|---|---|
ResNet-18-b16x8 | 11.17 | 0.56 | 94.82 | config | |
ResNet-34-b16x8 | 21.28 | 1.16 | 95.34 | config | |
ResNet-50-b16x8 | 23.52 | 1.31 | 95.55 | config | |
ResNet-101-b16x8 | 42.51 | 2.52 | 95.58 | config | |
ResNet-152-b16x8 | 58.16 | 3.74 | 95.76 | config |