mmpretrain/configs/shufflenet_v1
Ma Zerun 159b38d276
[Reproduction] Reproduce training results of T2T-ViT (#610)
* Add cosine cool down lr updater

* Use ema hook

* Update decay mult

* Update configs.

* Update T2T-ViT readme and format all readme

* Update swin readme

* Update tnt readme

* Add docstring for `CosineAnnealingCooldownLrUpdaterHook`.

* Update t2t readme and metafile
2021-12-28 15:09:40 +08:00
..
README.md [Reproduction] Reproduce training results of T2T-ViT (#610) 2021-12-28 15:09:40 +08:00
metafile.yml [Improvement] Rename config files according to the config name standard. (#508) 2021-11-19 14:20:35 +08:00
shufflenet-v1-1x_16xb64_in1k.py [Improvement] Rename config files according to the config name standard. (#508) 2021-11-19 14:20:35 +08:00
shufflenet_v1_1x_b64x16_linearlr_bn_nowd_imagenet.py [Improvement] Rename config files according to the config name standard. (#508) 2021-11-19 14:20:35 +08:00

README.md

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

Abstract

We introduce an extremely computation-efficient CNN architecture named ShuffleNet, which is designed specially for mobile devices with very limited computing power (e.g., 10-150 MFLOPs). The new architecture utilizes two new operations, pointwise group convolution and channel shuffle, to greatly reduce computation cost while maintaining accuracy. Experiments on ImageNet classification and MS COCO object detection demonstrate the superior performance of ShuffleNet over other structures, e.g. lower top-1 error (absolute 7.8%) than recent MobileNet on ImageNet classification task, under the computation budget of 40 MFLOPs. On an ARM-based mobile device, ShuffleNet achieves ~13x actual speedup over AlexNet while maintaining comparable accuracy.

Citation

@inproceedings{zhang2018shufflenet,
  title={Shufflenet: An extremely efficient convolutional neural network for mobile devices},
  author={Zhang, Xiangyu and Zhou, Xinyu and Lin, Mengxiao and Sun, Jian},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={6848--6856},
  year={2018}
}

Results and models

ImageNet-1k

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
ShuffleNetV1 1.0x (group=3) 1.87 0.146 68.13 87.81 config model | log