42 lines
1.0 KiB
Python
42 lines
1.0 KiB
Python
_base_ = [
|
|
'../_base_/models/twins_pcpvt_base.py',
|
|
'../_base_/datasets/imagenet_bs64_swin_224.py',
|
|
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
|
|
'../_base_/default_runtime.py'
|
|
]
|
|
|
|
# dataset settings
|
|
train_dataloader = dict(batch_size=128)
|
|
|
|
# schedule settings
|
|
optim_wrapper = dict(
|
|
optimizer=dict(
|
|
type='AdamW',
|
|
lr=5e-4 * 128 * 8 / 512, # learning rate for 128 batch size, 8 gpu.
|
|
weight_decay=0.05,
|
|
eps=1e-8,
|
|
betas=(0.9, 0.999)),
|
|
paramwise_cfg=dict(_delete=True, norm_decay_mult=0.0, bias_decay_mult=0.0),
|
|
clip_grad=dict(max_norm=5.0),
|
|
)
|
|
|
|
param_scheduler = [
|
|
# warm up learning rate scheduler
|
|
dict(
|
|
type='LinearLR',
|
|
start_factor=1e-3,
|
|
by_epoch=True,
|
|
begin=0,
|
|
end=5,
|
|
# update by iter
|
|
convert_to_iter_based=True),
|
|
# main learning rate scheduler
|
|
dict(
|
|
type='CosineAnnealingLR',
|
|
T_max=295,
|
|
eta_min=1e-5,
|
|
by_epoch=True,
|
|
begin=5,
|
|
end=300)
|
|
]
|