mmpretrain/tools/model_converters/ofa.py

112 lines
3.5 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import re
from collections import OrderedDict, namedtuple
from pathlib import Path
import torch
prog_description = """\
Convert OFA official models to MMPretrain format.
"""
MapItem = namedtuple(
'MapItem', 'pattern repl key_action value_action', defaults=[None] * 4)
def convert_by_mapdict(src_dict: dict, map_dict: Path):
dst_dict = OrderedDict()
convert_map_dict = dict()
for k, v in src_dict.items():
ori_k = k
for item in map_dict:
pattern = item.pattern
assert pattern is not None
match = next(re.finditer(pattern, k), None)
if match is None:
continue
match_group = match.groups()
repl = item.repl
key_action = item.key_action
if key_action is not None:
assert callable(key_action)
match_group = key_action(*match_group)
if isinstance(match_group, str):
match_group = (match_group, )
start, end = match.span(0)
if repl is not None:
k = k[:start] + repl.format(*match_group) + k[end:]
else:
for i, sub in enumerate(match_group):
start, end = match.span(i + 1)
k = k[:start] + str(sub) + k[end:]
value_action = item.value_action
if value_action is not None:
assert callable(value_action)
v = value_action(v)
if v is not None:
dst_dict[k] = v
convert_map_dict[k] = ori_k
return dst_dict, convert_map_dict
map_dict = [
# Encoder modules
MapItem(r'\.type_embedding\.', '.embed_type.'),
MapItem(r'\.layernorm_embedding\.', '.embedding_ln.'),
MapItem(r'\.patch_layernorm_embedding\.', '.image_embedding_ln.'),
MapItem(r'encoder.layer_norm\.', 'encoder.final_ln.'),
# Encoder layers
MapItem(r'\.attn_ln\.', '.attn_mid_ln.'),
MapItem(r'\.ffn_layernorm\.', '.ffn_mid_ln.'),
MapItem(r'\.final_layer_norm', '.ffn_ln'),
MapItem(r'encoder.*(\.self_attn\.)', key_action=lambda _: '.attn.'),
MapItem(
r'encoder.*(\.self_attn_layer_norm\.)',
key_action=lambda _: '.attn_ln.'),
# Decoder modules
MapItem(r'\.code_layernorm_embedding\.', '.code_embedding_ln.'),
MapItem(r'decoder.layer_norm\.', 'decoder.final_ln.'),
# Decoder layers
MapItem(r'\.self_attn_ln', '.self_attn_mid_ln'),
MapItem(r'\.cross_attn_ln', '.cross_attn_mid_ln'),
MapItem(r'\.encoder_attn_layer_norm', '.cross_attn_ln'),
MapItem(r'\.encoder_attn', '.cross_attn'),
MapItem(
r'decoder.*(\.self_attn_layer_norm\.)',
key_action=lambda _: '.self_attn_ln.'),
# Remove version key
MapItem(r'version', '', value_action=lambda _: None),
# Add model prefix
MapItem(r'^', 'model.'),
]
def parse_args():
parser = argparse.ArgumentParser(description=prog_description)
parser.add_argument('src', type=str, help='The official checkpoint path.')
parser.add_argument('dst', type=str, help='The save path.')
args = parser.parse_args()
return args
def main():
args = parse_args()
src = torch.load(args.src)
if 'extra_state' in src and 'ema' in src['extra_state']:
print('Use EMA weights.')
src = src['extra_state']['ema']
else:
src = src['model']
dst, _ = convert_by_mapdict(src, map_dict)
torch.save(dst, args.dst)
print('Done!!')
if __name__ == '__main__':
main()