mmpretrain/configs/resnet/metafile.yml

218 lines
6.6 KiB
YAML

Collections:
- Name: ResNet
Metadata:
Training Data: ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Epochs: 100
Batch Size: 256
Architecture:
- ResNet
Paper: https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
README: configs/resnet/README.md
Models:
- Config: configs/resnet/resnet18_b16x8_cifar10.py
In Collection: ResNet
Metadata:
FLOPs: 560000000
Parameters: 11170000
Training Data: CIFAR-10
Training Resources: 8x 1080 GPUs
Epochs: 200
Batch Size: 128
Name: resnet18_b16x8_cifar10
Results:
- Dataset: CIFAR-10
Metrics:
Top 1 Accuracy: 94.72
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_b16x8_cifar10_20200823-f906fa4e.pth
- Config: configs/resnet/resnet34_b16x8_cifar10.py
In Collection: ResNet
Metadata:
FLOPs: 1160000000
Parameters: 21280000
Training Data: CIFAR-10
Training Resources: 8x 1080 GPUs
Epochs: 200
Batch Size: 128
Name: resnet34_b16x8_cifar10
Results:
- Dataset: CIFAR-10
Metrics:
Top 1 Accuracy: 95.34
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_b16x8_cifar10_20200823-52d5d832.pth
- Config: configs/resnet/resnet50_b16x8_cifar10.py
In Collection: ResNet
Metadata:
FLOPs: 1310000000
Parameters: 23520000
Training Data: CIFAR-10
Training Resources: 8x 1080 GPUs
Epochs: 200
Batch Size: 128
Name: resnet50_b16x8_cifar10
Results:
- Dataset: CIFAR-10
Metrics:
Top 1 Accuracy: 95.36
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar10_20200823-882aa7b1.pth
- Config: configs/resnet/resnet101_b16x8_cifar10.py
In Collection: ResNet
Metadata:
FLOPs: 2520000000
Parameters: 42510000
Training Data: CIFAR-10
Training Resources: 8x 1080 GPUs
Epochs: 200
Batch Size: 128
Name: resnet101_b16x8_cifar10
Results:
- Dataset: CIFAR-10
Metrics:
Top 1 Accuracy: 95.66
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_b16x8_cifar10_20200823-d9501bbc.pth
- Config: configs/resnet/resnet152_b16x8_cifar10.py
In Collection: ResNet
Metadata:
FLOPs: 3740000000
Parameters: 58160000
Training Data: CIFAR-10
Training Resources: 8x 1080 GPUs
Epochs: 200
Batch Size: 128
Name: resnet152_b16x8_cifar10
Results:
- Dataset: CIFAR-10
Metrics:
Top 1 Accuracy: 95.96
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_b16x8_cifar10_20200823-ad4d5d0c.pth
- Config: configs/resnet/resnet50_b16x8_cifar100.py
In Collection: ResNet
Metadata:
FLOPs: 1310000000
Parameters: 23710000
Training Data: CIFAR-100
Training Resources: 8x 1080 GPUs
Epochs: 200
Batch Size: 128
Name: resnet50_b16x8_cifar100
Results:
- Dataset: CIFAR-100
Metrics:
Top 1 Accuracy: 80.51
Top 5 Accuracy: 95.27
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_batch256_cifar100_20210410-37f13c16.pth
- Config: configs/resnet/resnet18_b32x8_imagenet.py
In Collection: ResNet
Metadata:
FLOPs: 1820000000
Parameters: 11690000
Name: resnet18_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 70.07
Top 5 Accuracy: 89.44
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_batch256_imagenet_20200708-34ab8f90.pth
- Config: configs/resnet/resnet34_b32x8_imagenet.py
In Collection: ResNet
Metadata:
FLOPs: 3680000000
Parameters: 2180000
Name: resnet34_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 73.85
Top 5 Accuracy: 91.53
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_batch256_imagenet_20200708-32ffb4f7.pth
- Config: configs/resnet/resnet50_b32x8_imagenet.py
In Collection: ResNet
Metadata:
FLOPs: 4120000000
Parameters: 25560000
Name: resnet50_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 76.55
Top 5 Accuracy: 93.15
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_batch256_imagenet_20200708-cfb998bf.pth
- Config: configs/resnet/resnet101_b32x8_imagenet.py
In Collection: ResNet
Metadata:
FLOPs: 7850000000
Parameters: 44550000
Name: resnet101_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 78.18
Top 5 Accuracy: 94.03
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_batch256_imagenet_20200708-753f3608.pth
- Config: configs/resnet/resnet152_b32x8_imagenet.py
In Collection: ResNet
Metadata:
FLOPs: 11580000000
Parameters: 60190000
Name: resnet152_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 78.63
Top 5 Accuracy: 94.16
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_batch256_imagenet_20200708-ec25b1f9.pth
- Config: configs/resnet/resnetv1d50_b32x8_imagenet.py
In Collection: ResNet
Metadata:
FLOPs: 4360000000
Parameters: 25580000
Name: resnetv1d50_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 77.4
Top 5 Accuracy: 93.66
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d50_batch256_imagenet_20200708-1ad0ce94.pth
- Config: configs/resnet/resnetv1d101_b32x8_imagenet.py
In Collection: ResNet
Metadata:
FLOPs: 8090000000
Parameters: 44570000
Name: resnetv1d101_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 78.85
Top 5 Accuracy: 94.38
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d101_batch256_imagenet_20200708-9cb302ef.pth
- Config: configs/resnet/resnetv1d152_b32x8_imagenet.py
In Collection: ResNet
Metadata:
FLOPs: 11820000000
Parameters: 60210000
Name: resnetv1d152_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 79.35
Top 5 Accuracy: 94.61
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d152_batch256_imagenet_20200708-e79cb6a2.pth