43 lines
1.3 KiB
YAML
43 lines
1.3 KiB
YAML
Collections:
|
|
- Name: SEResNet
|
|
Metadata:
|
|
Training Data: ImageNet
|
|
Training Techniques:
|
|
- SGD with Momentum
|
|
- Weight Decay
|
|
Training Resources: 8x V100 GPUs
|
|
Epochs: 140
|
|
Batch Size: 256
|
|
Architecture:
|
|
- ResNet
|
|
Paper: https://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
|
|
README: configs/seresnet/README.md
|
|
|
|
Models:
|
|
- Config: configs/seresnet50/seresnet50_b32x8_imagenet.py
|
|
In Collection: SEResNet
|
|
Metadata:
|
|
FLOPs: 4130000000
|
|
Parameters: 28090000
|
|
Name: seresnet50_b32x8_imagenet
|
|
Results:
|
|
- Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 77.74
|
|
Top 5 Accuracy: 93.84
|
|
Task: Image Classification
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet50_batch256_imagenet_20200804-ae206104.pth
|
|
- Config: configs/seresnet101/seresnet101_b32x8_imagenet.py
|
|
In Collection: SEResNet
|
|
Metadata:
|
|
FLOPs: 7860000000
|
|
Parameters: 49330000
|
|
Name: seresnet101_b32x8_imagenet
|
|
Results:
|
|
- Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 78.26
|
|
Top 5 Accuracy: 94.07
|
|
Task: Image Classification
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet101_batch256_imagenet_20200804-ba5b51d4.pth
|