mmpretrain/mmcls/models/classifiers/image.py

221 lines
8.6 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import warnings
from ..builder import CLASSIFIERS, build_backbone, build_head, build_neck
from ..heads import MultiLabelClsHead
from ..utils.augment import Augments
from .base import BaseClassifier
warnings.simplefilter('once')
@CLASSIFIERS.register_module()
class ImageClassifier(BaseClassifier):
def __init__(self,
backbone,
neck=None,
head=None,
pretrained=None,
train_cfg=None,
init_cfg=None):
super(ImageClassifier, self).__init__(init_cfg)
if pretrained is not None:
warnings.warn('DeprecationWarning: pretrained is a deprecated \
key, please consider using init_cfg')
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
return_tuple = backbone.pop('return_tuple', True)
self.backbone = build_backbone(backbone)
if return_tuple is False:
warnings.warn(
'The `return_tuple` is a temporary arg, we will force to '
'return tuple in the future. Please handle tuple in your '
'custom neck or head.', DeprecationWarning)
self.return_tuple = return_tuple
if neck is not None:
self.neck = build_neck(neck)
if head is not None:
self.head = build_head(head)
self.augments = None
if train_cfg is not None:
augments_cfg = train_cfg.get('augments', None)
if augments_cfg is not None:
self.augments = Augments(augments_cfg)
else:
# Considering BC-breaking
mixup_cfg = train_cfg.get('mixup', None)
cutmix_cfg = train_cfg.get('cutmix', None)
assert mixup_cfg is None or cutmix_cfg is None, \
'If mixup and cutmix are set simultaneously,' \
'use augments instead.'
if mixup_cfg is not None:
warnings.warn('The mixup attribute will be deprecated. '
'Please use augments instead.')
cfg = copy.deepcopy(mixup_cfg)
cfg['type'] = 'BatchMixup'
# In the previous version, mixup_prob is always 1.0.
cfg['prob'] = 1.0
self.augments = Augments(cfg)
if cutmix_cfg is not None:
warnings.warn('The cutmix attribute will be deprecated. '
'Please use augments instead.')
cfg = copy.deepcopy(cutmix_cfg)
cutmix_prob = cfg.pop('cutmix_prob')
cfg['type'] = 'BatchCutMix'
cfg['prob'] = cutmix_prob
self.augments = Augments(cfg)
def extract_feat(self, img, stage='neck'):
"""Directly extract features from the specified stage.
Args:
img (Tensor): The input images. The shape of it should be
``(num_samples, num_channels, *img_shape)``.
stage (str): Which stage to output the feature. Choose from
"backbone", "neck" and "pre_logits". Defaults to "neck".
Returns:
tuple | Tensor: The output of specified stage.
The output depends on detailed implementation. In general, the
output of backbone and neck is a tuple and the output of
pre_logits is a tensor.
Examples:
1. Backbone output
>>> import torch
>>> from mmcv import Config
>>> from mmcls.models import build_classifier
>>>
>>> cfg = Config.fromfile('configs/resnet/resnet18_8xb32_in1k.py').model
>>> cfg.backbone.out_indices = (0, 1, 2, 3) # Output multi-scale feature maps
>>> model = build_classifier(cfg)
>>> outs = model.extract_feat(torch.rand(1, 3, 224, 224), stage='backbone')
>>> for out in outs:
... print(out.shape)
torch.Size([1, 64, 56, 56])
torch.Size([1, 128, 28, 28])
torch.Size([1, 256, 14, 14])
torch.Size([1, 512, 7, 7])
2. Neck output
>>> import torch
>>> from mmcv import Config
>>> from mmcls.models import build_classifier
>>>
>>> cfg = Config.fromfile('configs/resnet/resnet18_8xb32_in1k.py').model
>>> cfg.backbone.out_indices = (0, 1, 2, 3) # Output multi-scale feature maps
>>> model = build_classifier(cfg)
>>>
>>> outs = model.extract_feat(torch.rand(1, 3, 224, 224), stage='neck')
>>> for out in outs:
... print(out.shape)
torch.Size([1, 64])
torch.Size([1, 128])
torch.Size([1, 256])
torch.Size([1, 512])
3. Pre-logits output (without the final linear classifier head)
>>> import torch
>>> from mmcv import Config
>>> from mmcls.models import build_classifier
>>>
>>> cfg = Config.fromfile('configs/vision_transformer/vit-base-p16_pt-64xb64_in1k-224.py').model
>>> model = build_classifier(cfg)
>>>
>>> out = model.extract_feat(torch.rand(1, 3, 224, 224), stage='pre_logits')
>>> print(out.shape) # The hidden dims in head is 3072
torch.Size([1, 3072])
""" # noqa: E501
assert stage in ['backbone', 'neck', 'pre_logits'], \
(f'Invalid output stage "{stage}", please choose from "backbone", '
'"neck" and "pre_logits"')
x = self.backbone(img)
if self.return_tuple:
if not isinstance(x, tuple):
x = (x, )
warnings.warn(
'We will force all backbones to return a tuple in the '
'future. Please check your backbone and wrap the output '
'as a tuple.', DeprecationWarning)
else:
if isinstance(x, tuple):
x = x[-1]
if stage == 'backbone':
return x
if self.with_neck:
x = self.neck(x)
if stage == 'neck':
return x
if self.with_head and hasattr(self.head, 'pre_logits'):
x = self.head.pre_logits(x)
return x
def forward_train(self, img, gt_label, **kwargs):
"""Forward computation during training.
Args:
img (Tensor): of shape (N, C, H, W) encoding input images.
Typically these should be mean centered and std scaled.
gt_label (Tensor): It should be of shape (N, 1) encoding the
ground-truth label of input images for single label task. It
shoulf be of shape (N, C) encoding the ground-truth label
of input images for multi-labels task.
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
if self.augments is not None:
img, gt_label = self.augments(img, gt_label)
x = self.extract_feat(img)
losses = dict()
try:
loss = self.head.forward_train(x, gt_label)
except TypeError as e:
if 'not tuple' in str(e) and self.return_tuple:
return TypeError(
'Seems the head cannot handle tuple input. We have '
'changed all backbones\' output to a tuple. Please '
'update your custom head\'s forward function. '
'Temporarily, you can set "return_tuple=False" in '
'your backbone config to disable this feature.')
raise e
losses.update(loss)
return losses
def simple_test(self, img, img_metas=None, **kwargs):
"""Test without augmentation."""
x = self.extract_feat(img)
try:
if isinstance(self.head, MultiLabelClsHead):
assert 'softmax' not in kwargs, (
'Please use `sigmoid` instead of `softmax` '
'in multi-label tasks.')
res = self.head.simple_test(x, **kwargs)
except TypeError as e:
if 'not tuple' in str(e) and self.return_tuple:
return TypeError(
'Seems the head cannot handle tuple input. We have '
'changed all backbones\' output to a tuple. Please '
'update your custom head\'s forward function. '
'Temporarily, you can set "return_tuple=False" in '
'your backbone config to disable this feature.')
raise e
return res