mmpretrain/projects/internimage_classification/configs/internimage-large_8xb128_in...

52 lines
1.3 KiB
Python

_base_ = './_base_.py'
model = dict(
backbone=dict(
stem_channels=160,
drop_path_rate=0.1,
stage_blocks=[5, 5, 22, 5],
groups=[10, 20, 40, 80],
layer_scale=1e-5,
offset_scale=2.0,
post_norm=True),
head=dict(in_channels=1920))
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
scale=384,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='ResizeEdge',
scale=384,
edge='short',
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=384),
dict(type='PackInputs')
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = val_dataloader
optim_wrapper = dict(optimizer=dict(lr=5e-6))
param_scheduler = [
dict(
type='LinearLR',
by_epoch=True,
begin=0,
end=2,
convert_to_iter_based=True),
dict(type='CosineAnnealingLR', T_max=18, by_epoch=True, begin=2, end=20)
]
train_cfg = dict(by_epoch=True, max_epochs=20, val_interval=1)